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ABSTRACT

Continual semantic segmentation (CSS) is a cornerstone task in computer vision
that enables a large number of downstream applications, but faces the catastrophic
forgetting challenge. In conventional class-incremental semantic segmentation
(CISS) frameworks using Softmax-based classification heads, catastrophic forget-
ting originates from Catastrophic forgetting and task affiliation probability. We
formulate these problems and provide a theoretical analysis to more deeply under-
stand the limitations in existing CISS methods, particularly Strict Parameter Iso-
lation (SPI). To address these challenges, we follow a dual-phase intuition from
human annotators, and introduce Cognitive Cascade Segmentation (CogCaS), a
novel dual-phase cascade formulation for CSS tasks in the CISS setting. By de-
coupling the task into class-existence detection and class-specific segmentation,
CogCaS enables more effective continual learning, preserving previously learned
knowledge while incorporating new classes. Using two benchmark datasets PAS-
CAL VOC 2012 and ADE20K, we have shown significant improvements in a
variety of challenging scenarios, particularly those with long sequence of incre-
mental tasks, when compared to exsiting state-of-the-art methods. Our code will
be made publicly available upon paper acceptance.

1 INTRODUCTION

Deep learning has transformed semantic segmentation into a cornerstone of computer vision, en-
abling influential applications from autonomous navigation to medical diagnostics. Despite these
advances, real-world deployment faces a fundamental limitation, i.e., the conventional paradigm
requires all object categories to be predefined before training. When new classes emerge, as they
inevitably do in dynamic environments, models must be retrained with training data of both old and
new classes, incurring increased computational costs and potential privacy concerns.

This limitation has driven substantial research in continual learning (CL), where models incremen-
tally acquire new knowledge while trying to preserve existing capabilities. The core challenge is
catastrophic forgetting: the tendency of neural networks to abruptly forget previously learned infor-
mation when updated. Current approaches span multiple paradigms, including regularization-based
methods Wang et al. (2022); Xu et al. (2021) which constrain parameter updates, replay-based strate-
gies Aljundi et al. (2021); Rusu et al. (2022) which maintain historical exemplars, and optimization
techniques Li et al. (2022) which seek non-interfering parameter spaces. Among these, SPI Serra
et al. (2018) stands out for providing theoretical guarantee of zero-forgetting through parameter
compartmentalization, effectively addressing the stability-plasticity dilemma in classification tasks.

However, extending continual learning to semantic segmentation introduces unique complexities be-
yond classification. In particular in class-incremental semantic segmentation (CISS), models must
adapt to new categories while maintaining pixel-precise understanding of previous classes, all with-
out access to complete historical data. This setting introduces the challenge of background shift:
pixels belonging to future classes are temporarily labeled as background, requiring the model to
continuously revise its understanding of what constitutes “background” as new classes emerge Cer-
melli et al. (2020b). This continuous re-evaluation of the “background” class due to background shift
critically exacerbates the stability-plasticity dilemma, often compelling the model to make a detri-
mental trade-off between the forgetting of previously learned classes and the insufficient acquisition
of new ones, a challenge visually depicted in Figure 1.
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While recently developed CISS approaches show promising performance in knowledge preserva-
tion, we prove that this localized optimization strategy, even assuming perfect preservation of knowl-
edge of past classes, structurally prevents convergence to the global optimum achievable through
joint training on all classes. Our theoretical analysis also reveals that they face fundamental limita-
tions. Architecturally, the commonly used task headers based on Softmax need to output complete
probabilities for all current class at every stage. However, the probability output for task segmen-
tation head is essentially local and is only optimized for the current task category. This creates a
stark trade-off: while freezing historical heads eliminates dynamic interference, it simultaneously
cements distributional biases that prevent global optimization.

Motivated by these theoretical analyses, we propose a Cognitive Cascade Segmentation (CogCaS)
architecture that fundamentally restructures the CISS paradigm. Our approach introduces two key
innovations, i.e., Existence-Driven Activation by which segmentation heads are activated only for
detected classes and thus background interference is eliminated, and Parameter Modularity by
which independent detector and segmenter per class enable isolated evolution without cross-task
contamination. Our implementation deliberately adopts elementary components: basic backbones,
single-layer detectors and simple segmenters, and standard loss functions. This architectural trans-
parency ensures that our empirical improvements stem purely from the cognitive cascade design
rather than implementation sophistication, while maintaining the framework’s extensibility for fu-
ture enhancements.

In summary, our main contributions include (1) the first systematic characterization of the advan-
tages and disadvantages of SPI strategy in CISS, (2) a cognitively inspired architecture that resolves
the stability-plasticity dilemma through decoupling design, and (3) state-of-the-art performance with
significantly increased margins particularly in challenging long-sequence continual learning scenar-
ios.
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Figure 1: Continual semantic segmentation performance for classes learned at each task. Our
method maintains stable mIoU around 70%, demonstrating linear error accumulation, while other
methods experience a sharp decline as tasks increase, suggesting that existing methods struggle in
learning new classes over tasks.

2 RELATED WORK

Class-Incremental Semantic Segmentation (CISS) as a relatively new research topic is often con-
sidered as an extension of image-level continual learning, and therefore those techniques developed
originally for image-level continual learning have been adopted for CISS, including regulariza-
tion Cermelli et al. (2020a), pseudo-labeling/self-supervision Xie et al. (2024); Yang et al. (2023a),
and experience replay Cha et al. (2021); Maracani et al. (2021a); Yang et al. (2023b); Zhang et al.
(2022b). Such adoption is still being actively explored, as shown by very recent attempts Yu et al.
(2025). All these methods model segmentation as per-pixel multi-class Softmax classification, where
old and new logits directly compete, causing background drift that accumulate with the number of
tasks Farajtabar et al. (2020) which can be seen in Figure 1.

To mitigate Softmax competition, several studies recast CISS as a pixel-level multi-label problem
combined with strict parameter freezing. Representative methods such as SSUL Cha et al. (2021)
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and IPSeg Yu et al. (2025) append binary channels for each class and freeze them thereafter, achiev-
ing state-of-the-art performance with experience replay. In addition, built on Mask2Former Cheng
et al. (2021), methods such as CoMFormer Cermelli et al. (2023) and CoMasTRe Gong et al. (2024)
treat CISS as a mask-classification problem. These methods first generate class-agnostic masks
and then classify each mask. Objectness transfer gives them better forgetting resistance than pixel-
wise classification, yet they still rely on distillation or replay and their old-class mIoU degrades
markedly on long sequences. Our CogCaS adopts existence-driven activation—decoupling “does
class c exist?"" from “segment class c""—and freezes each class-specific segmentation head
after learning, achieving task-agnostic zero forgetting while maintaining high plasticity for
new classes.

3 METHODOLOGY

3.1 PRELIMINARIES

Notations. We consider the problem of Class-Incremental Semantic Segmentation (CISS), where a
model sequentially learns a sequence of T tasks, denoted as {T1, . . . , TT }. Each task Tt is associated
with a unique training set Dt which contains certain number of training images and corresponding
pixel-wise annotations. The task introduces a set of task-specific foreground classes Ct, which are
mutually exclusive between tasks, i.e., Cτ ∩ Ct = ∅ for all τ ̸= t. For each training image in
task Tt, each pixel is annotated as one of the task-specific foreground classes in Ct or the special
“background” class. Notably for the training set Dt, all pixels not belonging to the foreground class
set Ct are annotated as background. Thus, the annotated background regions in each training image
of task Tt encompass the true background as well as image regions corresponding to foreground
classes from past (T1:t−1) or future (Tt+1:T ) tasks. When updating the model with the training set
Dt and validation set Dv

t of task Tt, the model needs to be expanded to account for the set Ct of new
foreground classes. Let θ denote the collection of all the learnable model parameters throughout the
continual learning process (from task T1 to TT ). When the model learns task Tt, the part of θ which
are uniquely associated with future tasks (Tt+1:T ) are frozen with certain default value (i.e., zero
here). After updating the model based on certain task-specific loss function Lt, the leranable model
parameters are changed from θ∗

t−1 to θ∗
t , where θ∗

t represents the locally optimal model parameters
that minimizes Lt. The change in parameter values from Tt−1 to Tt is denoted by ∆t := θ∗

t −θ∗
t−1,

and the Hessian matrix of the loss function Lt with respect to the learnable parameters θ is denoted
by Ht(θ) =

∂2Lt(θ)
∂θ2 .

Convergence Assumption.To enable formal analysis of the CISS framework, we make the follow-
ing assumption about the learning dynamics.

Assumption 3.1 (Convergence for each task). For each task Tt, the optimization process converges
to a locally optimal model parameters θ∗

t , such that within its neighborhood N (θ∗
t ), the magnitude

of the loss gradient ∇Lt(θ) is bounded (smaller than ϵ) and the Hessian matrix Ht(θ) remains
positive semi-definite, satisfying the second-order conditions for local optimality, i.e.,

|∇Lt(θ)| ≤ ϵ ,Ht(θ) ⪰ 0 , ∀θ ∈ N (θ∗
t ) . (1)

Furthermore, it assumes that the magnitude of parameter updates satisfies |∆t| < δ, ∀t ≤ T , for
some small constant δ > 0. When learning a new task (per Assumption 3.1), the model’s perfor-
mance on prior tasks can degrade, a phenomenon known as catastrophic forgetting. To quantify
this, we will define the forgetting rate (see below) based on the change in the loss function, which
serves as a continuous and differentiable measurement function for task performance and reflects
generalization performance when evaluated on a validation set.

Definition 3.2 (Average Forgetting Rate). The forgetting rate for a previously learned task Tτ (where
τ < t) after the model parameters have been updated to θt for task Tt, is defined as the change in
the loss evaluated on the validation set Dv

τ . Formally, it is given by Eτ (θt) = Lval
τ (θt) − Lval

τ (θ∗τ ),
where Lval

τ denotes the loss computed on the validation data for task Tτ . By definition, this rate
is zero when evaluated at the task’s own optimal parameters, i.e., Eτ (θ∗τ ) = 0. In the context of
continual learning, the locally optimal parameters θ∗τ for task Tτ may cause forgetting of knowledge
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from previous tasks T1:τ−1. This effect is measured by the Average Forgetting Rate, defined as

Ēt(θ∗t ) =
1

t− 1

t−1∑
τ=1

Eτ (θ∗t ) t ≥ 2 . (2)

3.2 STRICT PARAMETER ISOLATION IN CISS

Based on Assumption 3.1 and Definition 3.2, the relationship between the average forgetting rate
for task Tt and Tt−1 can be obtained as (see Appendix B.1)

Ēt(θ∗t ) =
1

t− 1

(
(t− 2) · Ēt−1(θ

∗
t−1) +

1

2
∆⊺

t (

t−1∑
τ=1

Hτ (θ
∗
τ ))∆t + v⊺∆t

)
+O(δ · ϵ) , (3)

where vT =
∑t−1

τ=1(θ
∗
t−1 − θ∗τ )

⊺Hτ (θ
∗
τ ). From Equation (3), it is clear that the average forgetting

rate Ēt(θ∗t ) of locally optimal parameters θ∗t for task Tt is directly related to the average forgetting
rate Ēt−1(θ

∗
t−1) of locally optimal parameters θ∗t−1 for task Tt−1. With such relationship, we can

obtain the following zero-forgetting condition (see Appendix B.1).

Theorem 3.3 (Zero-forgetting Condition). For any continuous learning algorithm that satisfies As-
sumption 3.1, (1) if Ēτ (θ∗τ ) = 0, ∀τ < t, then Ēt(θ∗t ) = 1

2(t−1)∆
⊺
t

(∑t−1
i=1 Hi(θ

∗
i )
)
∆t, and (2)

Eτ (θ∗t ) = 0,∀τ < t, if and only if ∆⊺
t (
∑t−1

τ=1 Hτ (θ
∗
τ ))∆t = 0.

Theorem 3.3 offers two significant implications for achieving zero forgetting. First, even if zero
average forgetting (Ēτ (θ∗τ ) = 0) is achieved for all previous tasks τ < t when evaluated at their
respective optimal parameters, learning a new task Tt and thereby updating parameters (resulting
in ∆t ̸= 0) can still cause considerable average forgetting. Second, Theorem 3.3 (second half)
provides a direct mathematical condition for achieving true zero forgetting on all past tasks (i.e.,
Eτ (θ∗t ) = 0,∀τ < t) after the model learns task Tt, i.e., the quadratic term ∆⊺

t

(∑t−1
τ=1 Hτ (θ

∗
τ )
)
∆t

must be zero. Consequently, any continual learning algorithm aiming for zero forgetting must be
designed to ensure this quadratic term vanishes. Indeed, existing zero-forgetting methods, such
as orthogonal gradient method Farajtabar et al. (2020) and projected gradient method Saha et al.
(2021), work by satisfying such a condition (see details in Appendix B.2).

Strict parameter isolation (SPI) which is used in Cha et al. (2021); Yu et al. (2025) is a strategy that
can satisfy the zero forgetting condition in Theorem 3.3. By optimizing a unique set of parameters
for each new task while freezing those for previous tasks, the parameter update ∆t is guaranteed
to be in a subspace orthogonal to the parameters of all previous tasks. Consequently, the quadratic
term ∆⊺

t (
∑t−1

τ=1 Hτ )∆t is always zero, thus ensuring theoretical zero-forgetting.

Although the SPI strategy can theoretically prevent catastrophic forgetting by isolating task-specific
parameters, its direct application in CISS introduces a critical challenge: the problem of incompa-
rable outputs. In the SPI framework, each task-specific segmentation head is trained independently
on a subset of classes. Consequently, the output logits from different heads are not mutually cali-
brated; a high score from one head is not directly comparable to a score from another trained on a
different task. This renders the standard approach of applying a simple argmax operation across all
heads’ outputs to determine the final class for each pixel fundamentally flawed (also can be seen in
Figure 2(A)). This issue stems from the SPI model’s inability to determine a pixel’s task affiliation
before classifying it. This problem is conceptually analogous to challenges in image-level continual
learning. A prior study Kim et al. (2022), for instance, factorizes the image-level prediction into an
intra-task prediction and a task affiliation probability. Borrowing this formulation for our pixel-level
problem, the prediction for a pixel yp can be written as:

P (yp = c | x) = P (yp = c | x, Tt) · P (Tt | x) , ∀c ∈ Ct , (4)

where p is the index of a pixel in the input image x, and c is a class learned from task Tt. While SPI
perfectly preserves the intra-task prediction term P (yp = c|x, Tt) due to its zero-forgetting nature.
There is no mechanism to estimate the crucial task affiliation probability P (Tt|x), thus hindering
effective final prediction.

4
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Figure 2: Demonstration of existing typical CISS framework and the proposed CogCaS frame-
work. (A) Traditional CISS framework consists of a set of segmentation heads which are trained
sequentially and activated for inference simultaneously. (B) our proposed CogCaS restructures the
traditional CISS formulation into a dual-phase cascade using multi-label classifier and class-specific
segmentation head. The multi-label classifier determine whether each learned class exists in the
image, and only segmentation heads corresponding to existing classes are activated to produce a
foreground-background mask. These masks are then fused to obtain the final segmentation mask
using a mask fusion strategy.

3.3 CLASS-INCREMENTAL SEGMENTATION VIA COGNITIVE CASCADES

To resolve the issue of incomparable outputs in Equation (4) and fully leverage the zero-forgetting
property of SPI, we introduce Cognitive Cascade Segmentation (CogCaS), a novel framework that
fundamentally restructures the CISS paradigm. Our approach is motivated by the coarse-to-fine
strategy employed by human annotators who first identify the object categories present in an image
before delineating their precise boundaries. CogCaS mimics this cognitive process by decoupling
the problem into two sequential phases. First, an image-level classifier which acts as a Task Router
determines the existence of all learned classes within the input image. Second, only the parameter-
isolated segmentation heads corresponding to the detected classes are activated to perform binary
foreground-background segmentation. This restructuring can be formalized(in Appendix B.4) by
reframing the probabilistic decomposition from Equation (4) into a more intuitive, class-centric
model:

P (yp = c | x) ∝ P
(
yp = c | x, c

)︸ ︷︷ ︸
Binary segmentation

· I
(
c ∈ Cpred

)︸ ︷︷ ︸
Class existence

, ∀c ∈ C[1:t] , (5)

where Cpred is the set of classes that Phase I’s multi-label classifier predicts as being present in the
image x and I(·) is an indicator functions.

The overall pipeline of this framework is depicted in Figure 2(B). An input image x is first passed
through a task-shared, frozen pretrained feature extractor Φ to generate feature maps F = Φ(x).
Subsequently, F is processed by the following two cascade phases.

Phase I: Image-Level Category Recognition. This phase is designed to infer the presence of
each learned class. We use a multi-label classifier which operates on the feature maps F to yield
a class-existence probability P (c|x) for each learned class. The set of predicted classes Cpred is
then identified by applying a threshold α to these probabilities. Specifically, we adopt a Sigmoid
function with a Binary Cross-Entropy loss, which is naturally suited for the multi-label classification
setting. To enable continual learning, each class-specific weight block θclsc is frozen after its corre-
sponding training task is complete. This design not only achieves Strict Parameter Isolation (SPI) to
circumvent catastrophic forgetting, but also fundamentally avoids the problem of cross-task output
comparison by directly learning independent class-existence probabilities.
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Figure 3: Representative segmentation results from different methods after the model learns all tasks
in the Pascal VOC 2012 15-1 setting.

Phase II: Class-Specific Binary Segmentation. This phase is responsible for estimating the con-
ditional segmentation term, P (yp = c|x, c). For each class c ∈ Cpred identified in Phase I, its
dedicated and parameter-isolated segmentation head Hc(·) is activated. This head takes the feature
maps F as input and produces a two-channel probability map, Mc = (mbg

c ,mfg
c ), representing

the probability of each pixel belonging to the "relative background for class c" and the "foreground
for class c," respectively. The binary segmentation schema offers key advantages: it simplifies the
complex multi-class decision boundary into a single binary decision boundary, leading to faster con-
vergence and higher fidelity. Since this process yields a set of independent binary masks (one for
each predicted class), a subsequent fusion step is required to integrate them into a final coherent
multi-class segmentation map. This involves assigning a single predicted label to each pixel, espe-
cially in cases of overlapping predictions. The specific fusion strategies employed and their impact
on the final results can be found in our experimental analysis in Section 4.4

4 EXPERIMENTS

4.1 SETUP

Datasets. Following prior work Cermelli et al. (2020a); Cha et al. (2021); Maracani et al. (2021b);
Yang et al. (2023a), the proposed CogCaS was evaluated on two semantic segmentation datasets
PASCAL VOC Everingham et al. (2010) and ADE20K Zhou et al. (2017) with different complexity
levels. PASCAL VOC contains 20 object classes plus a background class, with 10,582 samples for
training and 1,449 samples for validation, while the large-scale dataset ADE20K presents a more
challenging scenario, containing 150 foreground classes and one background class, with 20,210 and
2,000 samples for training and validation, respectively.

CISS Settings. With each dataset, the widely used M -N setting is adopted, with M being the
number of foreground classes in the first task and N the number of new foreground classes in each
subsequent task. For example, in the VOC 10-1 setting, the model first learns to segment 10 classes,
then incrementally learns one new class in each subsequent task.

Implementation details. The proposed CogCaS was trained using 8 NVIDIA GeForce RTX 4090
GPUs. We conducted training on models utilizing both ResNet-101 He et al. (2016) and Swin-L Liu
et al. (2021) backbones. The Adam optimizer Kingma & Ba (2015) was employed for training, with
each task being trained for 90 epochs. The initial learning rate was set to 1 × 10−5. More details
can be found in the Appendix B.5.
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Table 1: Comparison with exsiting CISS methods on PASCAL VOC 2012 in mIoU (%). The best
results are marked in bold. ◦: ResNet101 backbone. ⋄: Swin-L backbone. †: unlike other methods,
this one is based on Mask2Former Cheng et al. (2021).

Method 10-1 (11 tasks) 15-5 (2 tasks) 15-1 (6 tasks)
0-10 11-20 all 0-15 16-20 all 0-15 16-20 all

Ours◦ 73.9 70.2 72.1 75.5 70.3 74.1 75.5 71.4 74.4
Joint Deeplab-v3◦ Chen et al. (2017) 78.4 76.4 77.4 79.8 72.4 77.4 79.8 72.4 77.4
Joint Ours◦ 79.3 77.6 78.4 79.2 76.2 78.4 79.2 76.2 78.4

LwF-MC◦ Rebuffi et al. (2017) 4.7 5.9 5.0 58.1 35.0 52.3 64.0 8.4 6.9
ILT◦Michieli & Zanuttigh (2021) 7.2 3.7 5.5 67.1 39.2 60.5 8.8 8.0 8.6
MiB◦ Cermelli et al. (2020a) 31.5 13.1 22.7 71.8 43.3 64.7 46.2 22.9 40.7
MiB+NeST◦ Xie et al. (2024) 39.4 21.1 30.6 75.5 48.7 69.5 60.2 29.9 53.0
PLOP ◦ Douillard et al. (2021) 44.0 15.5 30.5 75.4 49.6 69.3 64.1 20.1 53.1
PLOP+NeST◦ Xie et al. (2024) 47.2 16.3 32.4 77.6 55.8 72.4 67.2 25.7 57.3
BARM◦ Zhang & Gao (2024) 72.2 49.8 61.9 74.9 69.5 73.6 77.3 45.8 61.9
PLOP+LCKD◦ Yang et al. (2023a) — — — 75.2 54.8 71.1 69.3 30.9 61.1
SSUL◦ Cha et al. (2021) 71.3 46.0 59.3 77.8 50.1 71.2 77.3 36.6 67.6
RCIL◦ Zhang et al. (2022a) 55.4 15.1 34.3 78.8 52.0 72.4 70.6 23.7 59.4
IDEC◦ Zhao et al. (2023) 70.7 46.3 59.1 78.0 51.8 71.8 77.0 36.5 67.3

Ours⋄ 76.1 75.7 75.9 78.3 74.9 77.8 78.4 72.5 76.9
Joint Deeplab-v3⋄ Chen et al. (2017) 81.4 78.4 79.9 80.8 77.3 79.9 80.8 77.3 79.9
Joint Ours⋄ 82.7 80.9 81.8 81.3 83.4 81.8 81.3 83.4 81.8

MicroSeg⋄ Zhang et al. (2022b) 73.5 53.0 63.8 81.9 54.0 75.2 80.5 40.8 71.0
MiB⋄ Cermelli et al. (2020a) 35.7 14.8 26.7 74.3 45.1 67.3 48.7 19.5 41.7
MiB+NeST⋄ Xie et al. (2024) 41.3 24.1 33.1 77.8 50.1 71.2 63.2 23.5 53.7
PLOP⋄ Douillard et al. (2021) 47.2 18.4 33.5 79.2 50.2 72.3 67.6 25.2 57.6
PLOP+NeST◦ Xie et al. (2024) 49.2 19.8 35.2 81.6 55.8 75.4 72.2 33.7 63.1
BARM◦ Zhang & Gao (2024) 74.2 53.8 64.4 77.8 72.1 76.4 79.3 48.1 71.8
SSUL⋄ Cha et al. (2021) 74.3 51.0 63.2 79.7 55.3 73.9 78.1 33.4 67.5
CoMasTRe⋄† Gong et al. (2024) — — — 79.7 51.9 73.1 69.8 43.6 63.5
CoMFormer⋄† Cermelli et al. (2022) — — — 74.7 54.3 71.1 70.8 32.2 61.6

Table 2: Comparison with existing CISS methods on ADE20K using Swin-L backbone. †: unlike
other methods, this one is based on Mask2Former Cheng et al. (2021).

Method 100-50 (2 tasks) 100-10 (6 tasks) 100-5 (11 tasks)
0-100 101-150 all 0-100 101-150 all 0-100 101-150 all

Ours 41.2 29.4 37.3 42.3 25.6 36.8 40.1 24.7 35.0
Joint Deeplab-v3 Chen et al. (2017) 47.2 31.8 42.1 47.2 21.8 42.1 47.2 21.8 42.1
Joint Ours 47.8 38.7 44.7 47.8 38.7 44.7 47.8 38.7 44.7

MiB Cermelli et al. (2020a) 39.0 16.7 31.2 36.6 9.8 27.7 34.7 4.8 24.7
MiB+NeST Xie et al. (2024) 38.8 23.1 33.5 38.8 19.1 32.2 35.2 13.6 28.1
PLOP Douillard et al. (2021) 40.4 13.4 31.5 39.4 12.6 30.1 36.9 6.2 26.7
PLOP+NeST Xie et al. (2024) 40.8 22.8 34.8 39.4 20.5 33.2 38.3 15.4 30.7
BARM Zhang & Gao (2024) 42.0 23.0 35.7 41.1 23.1 35.2 40.5 21.2 34.1
FALCON Truong et al. (2025) 45.9 29.1 40.3 41.1 23.2 35.2 40.8 18.9 33.5
CoMFormer† Cermelli et al. (2023) 44.7 26.2 38.4 40.6 15.6 32.3 39.5 13.6 30.9
CoMasTRe† Gong et al. (2024) 45.7 26.0 39.2 42.3 18.4 34.4 40.8 15.8 32.6

4.2 MAIN RESULTS

Experimental results demonstrate the efficacy of the proposed CogCaS method on the PASCAL
VOC 2012 and ADE20K datasets, as presented in Table 1 and Table 2 respectively.

Our CogCaS as a non-replay method was compared with basic and state-of-the-art non-replay base-
lines. As Table 1 shows, on the PASCAL VOC 2012 dataset, CogCaS exhibited superior perfor-
mance across various incremental learning configurations. For example, in the VOC 10-1 setting (11
tasks), CogCaS achieved the highest mean Intersection over Union (mIoU) of 70.2% for new classes
(11-20) and a leading overall mIoU of 72.1%. The superiority of CogCaS was more pronounced on
the complex ADE20K dataset across all evaluated incremental settings (Table 2). Figure 3 visually
confirms the superior performance of our method. These results consistently support the efficacy
of our CogCaS in learning new knowledge and preserving old knowledge in both small-scale and
large-scale incremental scenarios.
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Table 3: Comparison with existing CISS methods under more challenging continual learning set-
tings.

Method VOC 1-1 (20 tasks) VOC 2-1 (19 tasks) VOC 2-2 (10 tasks)
0-1 2-20 all 0-2 3-20 all 0-2 3-20 all

Ours 79.4 70.1 70.9 76.3 71.2 71.9 75.9 70.8 71.5
MiB Cermelli et al. (2020a) 27.3 6.4 8.3 23.6 7.9 10.14 41.1 23.4 25.9
PLOP Douillard et al. (2021) 25.4 4.2 6.2 19.4 6.2 8.1 39.7 22.8 25.2
MiB+NeST Xie et al. (2024) 28.1 6.8 8.7 24.5 8.1 10.4 40.4 25.8 27.8
PLOP+NeST Xie et al. (2024) 32.5 4.6 7.3 20.1 7.9 10.5 38.1 23.5 25.5
SSUL Cha et al. (2021) 60.1 29.6 32.5 59.6 34.7 38.2 60.3 40.6 44.0
IPSeg Yu et al. (2025) 61.8 30.2 33.2 60.1 32.6 36.2 64.7 49.5 51.4

Table 5: Ablation experiments with respect to the classification head using parameters trained under
different task settings

Method VOC 1-1 (20 tasks) VOC 2-1 (19 tasks) VOC 2-2 (10 tasks) ADE 100-5 (11 tasks)
0-1 2-20 all 0-2 3-20 all 0-2 3-20 all 0-100 101-150 all

Segmentation Only 18.2 13.1 13.5 14.3 17.2 16.7 13.8 16.5 16.1 6.7 9.5 7.6
Full Model 79.4 70.1 70.9 76.3 71.2 71.9 75.9 70.8 71.5 40.1 24.7 35.0
Oracle 80.2 70.3 71.2 77.4 71.5 72.3 77.4 71.8 72.4 48.6 31.8 43.0

To further confirm the robustness of our method, experiments under more challenging conditions
were performed in which tasks are more numerous with fewer classes to be learned within each
class. As Table 3 shows, our CogCaS significantly outperforms traditional knowledge distillation
methods (MiB, PLOP, and NeST variants) and parameter-isolation strategies (SSUL, IPSeg). For
example, in the VOC 1-1 setting (totally 20 tasks), our method achieves 70.9% overall mIoU versus
only 7.3% for PLOP+NeST and 33.2% for IPSeg. In the VOC 2-2 setting (10 tasks), our method
reaches 71.5% compared to 27.8% (MiB+NeST) and 51.4% (IPSeg).

Table 4: Phase I class-existence detection on the
evaluation split (%). Results are averaged across
all settings in the datasets.

Dataset mAP↑ Prec.↑ Rec.↑
PASCAL VOC 2012 82.08 92.33 88.70
ADE20K 69.51 73.48 47.50

These results clearly demonstrate our CogCaS
can well learn new classes and preserve old
knowledge even in a long CISS learning process.

To make the first phase explicit, Table 4 sum-
marises class-existence detection metrics (mAP,
precision, and recall) on both benchmarks.

4.3 ABLATION STUDIES

To assess the practical impact of the classification head during inference, we conducted comparative
experiments with three distinct model configurations. The first, termed the “Full Model”, utilizes the
complete model architecture. The second, the “Segmentation Only” version, deactivates the classi-
fication head during testing, relying solely on the segmentation heads learned during training. The
third, the “Oracle” version, substitutes the classification head’s output with ground truth labels to
isolate the component’s error contribution. By comparing these three settings using standard seman-
tic segmentation metrics, we can precisely determine the classification head’s actual contribution
and significance to our decoupled segmentation framework at test time.

The ablation experiments of this study in Table 5 show that there is just small difference in per-
formance between the “Oracle” configuration (using real labels) and the “complete model” (for
example, both are 70.9% and 71.2%), indicating that the multi-label classifier of the model can ef-
fectively handle the 20 categories of VOCs. However, the performance of the “segmentation only”
configuration declined, indicating that learning the relationship between foreground and background
remains a challenge even with the inclusion of near-OOD data during training.

On the ADE20K dataset with more complex categories (150 classes), the mIoU configured with
“Oracle” (43.0%) was significantly better than that of the “Full Model” (35.0%), revealing that the
classifier encounters challenges when facing a large number of categories, and its errors have a sig-
nificant impact on the segmentation performance. These results jointly prove that the classification
head is a key component in this decoupling framework. Especially when there are many categories,
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its accuracy is crucial to the final segmentation effect, and removing the classification head usually
leads to performance loss.

4.4 SENSITIVITY STUDY

Table 6: Sensitivity analysis of mask fusion strategies
on VOC across three incremental settings. Results are
reported in mIoU (%).

Fusion Strategy VOC 10-1 VOC 15-5 VOC 15-1

Logits-based 71.4 73.3 73.4
Random 71.9 73.2 73.9
Strict 70.9 72.8 73.0
Distributed (Ours) 72.1 74.1 74.4
Loose 72.8 74.9 75.2

Mask Fusion Strategy Analysis. To
handle overlapping predictions in seg-
mentation masks, we evaluate five fu-
sion strategies: (1) Logits-based: se-
lects the class with highest confidence;
(2) Random: randomly chooses among
overlapping predictions; (3) Strict: as-
signs overlapping pixels to background;
(4) Distributed: prioritizes rare cate-
gories to preserve small objects; and
(5) Loose: accepts predictions containing the ground truth category. As shown in Ta-
ble 6, the Loose strategy achieves superior performance across all settings, followed by
our Distributed approach. The Logits-based and Random strategies show comparable re-
sults, while Strict performs worst due to its conservative background assignment. These re-
sults demonstrate the importance of appropriate overlap handling in incremental segmentation.

4.5 ADDITIONAL STUDY

1 2 3 4 5 6 7 8 9 10
Tasks

0
10
20
30
40
50
60
70
80

m
Io

U
 (%

)

2-2 setting

MiB
PLOP
MiB+NeST

PLOP+NeST
Ours
Shared Parameters

Figure 4: This figure shows the impact on the
model performance when the task-shared param-
eters are set.

Due to limited resources and time, our further
investigations focused on the challenging 2-2
settings on the VOC dataset. To further vali-
date our method, we unfroze the Encoder’s fi-
nal bottleneck layer, making it task-shared and
trainable, as shown in Figure 4. Manually set-
ting these task-shared parameters did not af-
fect new class learning (matching baseline per-
formance). However, this configuration, when
combined with SPI, resulted in catastrophic for-
getting, evidenced by a 37% drop in mIoU. By
intentionally disrupting the SPI settings, we ob-
served that while new classes learned normally,
old classes experienced catastrophic forgetting.
This observation, in reverse, further substanti-
ates the correctness of our proposed method.
What’s more, adding class-specific LoRA to
the backbone, the improvement obtained by our
method is not significant (only improve 1%
mIou), but the parameters need to be changed with the task, which will significantly increase the
inference time.

5 CONCLUSION

This study provides a theoretical analysis to deeply understand the limitations within existing CISS
methods and introduces a novel dual-phase CISS framework in which the segmentation task is de-
composed into two disentangled stages. Crucially, the SPI strategy inherent in our design enables
the framework to achieve a zero-forgetting rate for knowledge learned in previous tasks. Conse-
quently, the model’s performance is not significantly affected by the number of tasks in the CISS
setting, showing notable robustness in challenging, long-sequence scenarios where other methods
falter. A primary limitation is that although our model’s performance can approach the upper bound
set by joint training, it demands substantial training resource. Future work includes the investiga-
tion of class-specific fine-tuning of the feature encoder for other imaging modalities (e.g., medical
images) and applying existing foundational models such as Segment Anything Model (SAM) as the
segmentation heads in the proposed framework.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided our source code in the supplementary
materials. Upon the paper’s acceptance, we will make the code publicly available on a GitHub
repository. All experimental setups, including dataset details, incremental learning configurations,
and hyperparameters, are described in Section 4.1 and Appendix B.5. The theoretical framework
and its corresponding proofs that form the basis of our method are detailed in Section 3.1 and
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistant. The role of the LLM was strictly limited to language polishing, which included improving
grammar, clarity, and overall readability. The LLM did not contribute to the research ideation,
experimental design, methodology, or analysis of the results. All authors have reviewed the final
text and take full responsibility for the content of this paper.

B THEORETICAL ANALYSIS OF DYNAMIC BACKGROUND SUPERVISION

B.1 FORGETTING RATE

For the forgetting rate in Definition 3.2, the average forgetting rate Eτ (θ)is defined as the arithmetic
average of the forgetting rates of historical tasks:

Eτ (θ) = Lval
τ (θ)− Lval

τ (θ∗τ )

Applying Taylor expansion to the above equation gives us:

Eτ (θ) = (θ − θ∗τ )
⊺∇Lval

τ (θ∗τ ) +
1

2
(θ − θ∗τ )

⊺
Hτ (θ

∗
τ )(θ − θ∗τ ) +O(∥θ − θ∗τ∥3) (6)

In Equation (6):

• First order (θ − θ∗τ )
⊺∇Lval

τ (θ∗τ ): said loss function near the optimal parameters of linear
change;

• Second order terms 1
2 (θ − θ∗τ )

⊺
Hτ (θ

∗
τ )(θ− θ∗τ ): by Hessian Matrix Hτ (θ

∗
τ ) said the local

curvature of loss function;

• high order events O(∥θ − θ∗τ∥3): said the higher order nonlinear effects.

In Assumption 3.1: ∇Lτ (θ
∗
τ ) ≤ ϵ, including ϵ is a limitless tends to zero (in the optimal parameter

θ∗τ , The gradient of the loss function has gone to zero), so the first-order term in the Taylor expansion
is ignored, and the forgetting rate is dominated by the second-order term:

Eτ (θ) =
1

2
(θ − θ∗τ )

⊺
Hτ (θ

∗
τ )(θ − θ∗τ ) +O(∥θ − θ∗τ∥3) (7)

For two specific tasks i, jand the optimal parameters θ∗j on the tasks j(assuming that the parameters
vary within a range of δ, That’s ∥θ − θ∗t ∥ ≤ δ) (we’ve added the range of the parameter to our as-
sumption). We find that based on Equation (7), this forgetting rate can be simplified to Equation (8),
and the simplified formula is as follows:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ei(θ∗j ) =
1

2
(θ∗j − θ∗i )

⊺Hi(θ
∗
i )(θ

∗
j − θ∗i ) +O(δ3)

=
1

2

(
j∑

τ=i+1

∆τ

)⊺

Hi(θ
∗
i )

(
j∑

τ=i+1

∆τ

)
+O(δ3)

=
1

2

(
∆j +

j−1∑
τ=i+1

∆τ

)⊺

Hi(θ
∗
i )

(
∆j +

j−1∑
τ=i+1

∆τ

)
+O(δ3)

=
1

2

(
j−1∑

τ=i+1

∆τ

)⊺

Hi(θ
∗
i )

(
j−1∑

τ=i+1

∆τ

)
︸ ︷︷ ︸

Ei(θ∗
j−1)

+
1

2
∆⊺

jHj(θ
∗
j )∆j

+
1

2

(
j−1∑

τ=i+1

∆τ

)⊺

Hi(θ
∗
i )∆j +

1

2
∆⊺

jHi(θ
∗
i )

(
j−1∑

τ=i+1

∆τ

)
+O(δ3)

= Ei(θ∗j−1) +
1

2
∆⊺

jHi(θ
∗
i )∆j +

(
j−1∑

τ=i+1

∆τ

)⊺

Hi(θ
∗
i )∆j +O(δ3)

The Forgetting rate for task i and optimal parameter θ∗j can be expressed as Equation (8)

Ei(θ∗j ) = Ei(θ∗j−1) +
1

2
∆⊺

jHi(θ
∗
i )∆j +

(
j−1∑

τ=i+1

∆τ

)⊺

Hi(θ
∗
i )∆j +O(δ3) (8)

In Equation (8), it consists of several parts: past forgotten rate: Ei(θ∗j−1), namely after the com-
pletion of the task j − 1 for task i forgotten; independent effects of the current parameter update:
1
2∆

⊺
jHi(θ

∗
i )∆j , directly caused by the parameter update ∆jof task j; interaction between historical

and current updates :
(∑j−1

τ=i+1 ∆τ

)⊺
Hi(θ

∗
i )∆j , which reflects the nonlinear superposition effect

of the parameter update sequence, and represents the inner product of the historical update and the
current update. If the two directions are negatively correlated under the measure of Hi(θ

∗
i )(e.g.,

orthogonal or reverse), forgetting may be alleviated. On the contrary, if the direction is consistent,
the forgetting is aggravated.

Similarly, for the average forgetting rate Ēt(θ∗t ) = 1
t−1

∑t−1
τ=1 Eτ (θ∗t ), we can also simplify it through

Equation (7)

Ēt(θ∗t ) =
1

t− 1

t−1∑
τ=1

(
Eτ (θ∗t−1) +

1

2
∆⊺

tHτ (θ
∗
τ )∆t +

(
t−1∑

o=τ+1

∆o

)⊺

Hτ (θ
∗
τ )∆t

)
+O(δ3)

=
1

t− 1

(
t−2∑
τ=1

(
Eτ (θ∗t−1)

)
+

1

2

t−1∑
τ=1

∆⊺
tHτ (θ

∗
τ )∆t +

t−1∑
τ=1

(
t−1∑

o=τ+1

∆o

)⊺

Hτ (θ
∗
τ )∆t

)
+O(δ3)

=
t− 2

t− 1
Ēt−1(θ

∗
t−1) +

1

2(t− 1)
∆⊺

t

(
t−1∑
τ=1

Hτ (θ
∗
τ )

)
∆t +

1

t− 1


t−1∑
τ=1

(θ∗t−1 − θ∗τ )
⊺Hτ (θ

∗
τ )︸ ︷︷ ︸

v⊺
t

∆t

+O(δ3)

=
1

t− 1

(
(t− 2)Ēt−1(θ

∗
t−1) +

1

2
∆⊺

t (

t−1∑
τ=1

Hτ (θ
∗
τ ))∆t + v⊺t ∆t

)
+O(δ3)

In the above simplification, each average forgetting rate has a specific v, which we denote as vt,
representing that it belongs to Ēt(θ∗t )
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Ēt(θ∗t ) =
1

t− 1

(
(t− 2) · Ēt−1(θ

∗
t−1) +

1

2
∆⊺

t (

t−1∑
o=1

H⋆
o)∆t + v⊺t ∆t

)
+O(δ3) (9)

From this equation, we can observe that the average forgetting rate for task t, Ēt(θ∗t ), is influenced
by three principal terms (ignoring the higher-order term O(δ3)) that are averaged:

• (t−2) · Ēt−1(θ
∗
t−1) relates to the average forgetting rate of the immediately preceding task.

• 1
2∆

⊺
t (
∑t−1

o=1 H
⋆
o)∆t captures the impact of the parameter change ∆t in conjunction with

the cumulative Hessian matrices from all prior tasks (from o = 1 to t− 1).

Building on these observations, a further hypothesis can be formulated: It is proposed that if the
average forgetting rate for each task from k = 2 up to k = t − 1 is zero (i.e., the first two items in
Ēk(θ∗k) is zero for all k ∈ {2, 3, . . . , t − 1}), then for the current t-th task, the component vT∆t is
also hypothesized to be zero.

We will use mathematical induction to prove this hypothesis. At first, we suppose the first two terms
of Ē2(θ∗2) are both 0, then we can get v3 = 0:

Ē3(θ∗3) =
1

2

(
1 · Ē2(θ∗2) +

1

2
∆⊺

3(H2(θ
∗
2) +H1(θ

∗
1))∆3 +

2∑
t=1

(θ2 − θt)
⊺H⋆

t ∆3

)

= 0 +
1

2
∆T

3 (
1

2
H2(θ

∗
2) +

1

2
H1(θ

∗
1))∆3 +

1

2
∆T

2H
1
1︸ ︷︷ ︸

=0

∆3 +
1

2
(θT

2 − θ2)︸ ︷︷ ︸
=0

H⋆
t ∆3

.

Then, we suppose the first tow terms of Ēt−1(θ
∗
t−1) is zero, we find that:

vt − vt−1 =

t−1∑
o=1

(θ∗t−1 − θ∗o)
⊺Ho (θ

∗
o)−

t−2∑
o=1

(θ∗t−2 − θ∗o)
⊺Ho (θ

∗
o)

=

t−2∑
o=1

(θ∗t−1 − θ∗o)
⊺Ho (θ

∗
o)−

t−2∑
o=1

(θ∗t−2 − θ∗o)
⊺Ho (θ

∗
o)

=

t−2∑
o=1

(
θ∗t−1 − θ∗o − θ∗t−2 + θ∗o

)⊺
Ho (θ

∗
o)

Since in Ēt−1(θ
∗
t−1),

1
2∆

⊺
t−1

∑t−2
o=1 Ho (θ

∗
o)∆t−1 = 0, So we find that: vt − vt−1 = 0.

Also we can get the conclusion that:

vt − vt−1 = ∆⊺
t−1

t−2∑
τ=1

Hτ (θ
∗
τ ) (10)

We can say that if Ēτ (θ∗τ ) = 0, ∀τ < t, then Ēt(θ∗t ) = 1
2(t−1)∆

⊺
t

(∑t−1
i=1 Hi(θ

∗
i )
)
∆t, which is show

in Theorem 3.3 (1).

In Theorem 3.3 (2), we need to proof the statement: Eτ (θ∗t ) = 0,∀τ < t ⇐⇒
∆⊺

t

(∑t−1
τ ′=1 Hτ ′(θ∗τ ′)

)
∆t = 0 . It is clear that when Eτ (θ∗t ) = 0,∀τ < t, then Ēτ (θ∗τ ) = 0,∀τ < t,

using conclusion in Theorem 3.3(1), we can get the result: ∆⊺
t

(∑t−1
τ ′=1 Hτ ′(θ∗τ ′)

)
∆t = 0.

When ∆⊺
t

(∑t−1
τ ′=1 Hτ ′(θ∗τ ′)

)
∆t = 0, using Assumption 3.1, all Hessian matrix Hτ (θ

∗
τ ) is positive

semi-definite, then we have: ∆⊺
τ (
∑τ−1

o=1 Ho(θ
∗
o)) = 0,∀τ < t, using Equation (10), we have:

v2 ≤ v3 · · · ≤ vt ≤ vt+1. In definition, Ē2(θ∗2) is zero, and Ē3(θ∗3) = 1
8∆

⊺
3(
∑2

o=1 Hoθ
∗
o)∆3 = 0,

we have Ēt(θ∗t ) = 0 which can say that Eτ (θ∗t ) = 0,∀τ < t

15
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B.2 OTHER ZERO FORGETTING STRATEGY

B.2.1 ORTHOGONAL GRADIENT METHOD

We follow the setting of the paper Farajtabar et al. (2020), where L is a non-negative loss func-
tion(CE or BCE loss). We also assume that the symbol fθ represents the parameter θ used by the
model (f c

θ (x) means one of the output’s channel which is about class c) and Nt represents the total
amount of data used in the tasks from 1 to t.

In Orthogonal Gradient Method Farajtabar et al. (2020), they want to address catastrophic forgetting
in continual learning by keeping the updates for a new task orthogonal to the gradient directions
associated with previous tasks’ predictions. Formally, equal to Equation (11).

⟨∆i
t,∇θ∗

t−1
f c
θ∗
t−1

(xτ )⟩ = 0 ∀c ∈ C[1:t−1], xτ ∈ Dτ , τ < t , (11)

where ∆i
t denotes the the i-th step for update.

Due to the previous studies Schraudolph (2002), the hessian matrix of the loss can be decomposed
as two other matrices: the outer-product Hessian and the functional Hessian, and at the optimum
parameter for loss function, the functional Hessian is negligible Singh et al. (2021). So we can write
the approximation of the Hessian matrix under the optimal parameters in task τ :

Hτ (θ
∗
τ ) =

1

Nτ

Nτ∑
i=1

∇θ∗
τ
fθ∗

τ
(xi)(∇2

fLτ (xi, yi))∇θ∗
τ
f(xi)

⊺

When the parameter update follows Equation (11), it essentially satisfies the condition that the bi-
nomial is 0 mentioned in our zero forgetting condition in Theorem 3.3.

B.3 WHY PARAMETERS ISOLATION IS ZERO FORGETTING

We find that when the SPI strategy is used, the sum of the historical Hessian matrix(
∑t−1

τ=1 Hτ (θ
∗
τ ))

is similar to a semi-positive definite block diagonal matrix to its parameter subspace:

t−1∑
τ=1

Hτ (θ
∗
τ ) =



H1(θ
∗
1) 0 · · · 0 · · · 0

0 H2(θ
∗
2) · · · 0 · · · 0

...
...

. . .
... · · · 0

0 0 · · · Ht−1(θ
∗
t−1) · · · 0

...
...

...
...

...
...

0 0 0 0 0 0


. (12)

Where:

• According to Assumption 3.1, Each Hτ (θ
∗
τ ) on the diagonal is a square matrix representing

the Hessian for task τ and is a semi-positive matrix. The dimensions of Hτ (θ
∗
τ ) correspond

to the number of new parameters introduced for task τ .
• The ′ symbols represent zero, indicating that the Hessian components for parameters of

different tasks are decoupled due to SPI strategy.

Just as expressed in Equation (12), the sum of the historical tasks’ Hessian matrices
∑t−1

τ=1 Hτ (θ
∗
τ )

and the parameter update for new task ∆t are not in the same subspace, and the product between
them must be 0 which is the zero forgetting condition in Theorem 3.3.

B.4 CASCADE MODELING

We start from the task-level factorization introduced in Equation (4):

P (yp = c | x) = P
(
yp = c

∣∣ x, Tt) P(Tt | x), c ∈ Ct,
where Tt denotes the task that first introduced class c. Under SPI, classes are disjoint across tasks:
Cτ ∩ Ct = ∅ for all τ ̸= t.
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Lemma B.1 (Task Prior Decomposition). For any image x,

P (Tt | x) =
∑
c∈Ct

P (c | x), (13)

where P (c | x) represents the probability that class c exists somewhere in image x.

Proof. Since classes in Ct are mutually exclusive and task Tt is active if and only if at least one class
from Ct appears in x, we have

P (Tt | x) = P

(⋃
c∈Ct

c | x

)
=
∑
c∈Ct

P (c | x)

by the law of total probability.

From Task-Level to Class-Level Factorization The task-level factorization necessarily reduces
to a simpler class-level form that eliminates the problematic task prior P (Tt | x).
Theorem B.2 (Cascade Factorization). For any pixel p, class c, and image x:

P (yp = c | x) = P
(
yp = c | x, c

)
P (c | x). (14)

Proof. Substituting Lemma B.1 into the original task-level factorization:

P (yp = c | x) = P
(
yp = c | x, Tt

) ∑
c′∈Ct

P (c′ | x).

Expanding the conditional probability using the law of total probability:

P
(
yp = c | x, Tt

)
=
∑
c′∈Ct

P
(
yp = c | x, c′

)
P (c′ | x, Tt).

The key insight: if class c′ is not present in the scene, no pixel can be labeled as c′. Therefore,
P
(
yp = c | x, c′

)
= 0 for all c′ ̸= c. Only the term c′ = c survives:

P
(
yp = c | x, Tt

)
= P

(
yp = c | x, c

)
P (c | x, Tt).

Since class c existing implies task Tt is active, by Bayes’ rule:

P (c | x, Tt) =
P (c | x)
P (Tt | x)

.

Substituting back into the first equation, the task prior P (Tt | x) cancels out, yielding:

P (yp = c | x) = P
(
yp = c | x, c

)
P (c | x).

Implications for CogCaS Architecture Theorem B.2 proves that under SPI, the cascade fac-
torization in Equation (14) is the unique probabilistically consistent decomposition. This directly
motivates our two-phase CogCaS design:

• Phase I: Multi-label classifier estimates class existence probabilities P (c | x)
• Phase II: Binary segmentation heads model conditional segmentation P (yp = c | x, c)

This decomposition eliminates the ill-defined task prior, enables complete parameter isolation for
zero-forgetting, and aligns with optimal Bayesian factorization principles.
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Figure 5: The figure illustrate near-ood samples and process.

B.5 TRAINING AND INFERENCE

CISS Training. For every new task Tt, we append one multi-label classifier head and one class-
specific binary segmentation head (Deeplab-v3’s ASPP module + 1× 1 conv) for each unseen class
c ∈ Ct, while all previous weights are frozen (*Strict Parameter Isolation*).

Furthermore, during the training stage, we manually construct near-out-of-distribution (near-OOD)
data based on the data available for the current task to enhance the model’s robustness. As illustrated
in the Figure 5, this process is divided into two distinct stages: Phase I and Phase II. It is important
to note that our model is trained separately in these two phases.

Joint Training. In the joint training setting, we first train the classifier in Phase I. After the training
for Phase I is complete, because we have access to the full dataset, we then select corresponding out-
of-distribution data for each class-specific segmentation head in Phase II. This data is chosen from
the dataset at a 1:1 ratio, and we ensure that for a specific class, its corresponding OOD samples do
not contain any information about that class in any single pixel.

Parameter Overhead. Each additional class contributes≈1.37M parameters (5.24 MB at FP32),
corresponding to 3.1 % of a ResNet-101 backbone (44.5 M params) and 4.9 % of a Swin-T backbone
(28 M params); even for the larger Swin-B (88 M params) the overhead per class is merely 1.6 %.

Loss Functions. Classification and segmentation are optimised separately and then summed:

Lcls =
1
|B|

∑
x∈B

∑
c∈C1:t

BCE
(
P (c | x), yc

)
Lseg = 1

|B|

∑
x∈B

∑
c∈Ct

[
α Focal(Mc, M̂c) + β Dice(Mc, M̂c)

]

Focal(Mc, M̂c) = − 1
N

N∑
i=1

[
αMc,i(1− M̂c,i)

γ log(M̂c,i) + (1− α)(1−Mc,i)(M̂c,i)
γ log(1− M̂c,i)

]

Dice(M,M̂) =
2
∑

i MiM̂i + ε∑
i Mi +

∑
i M̂i + ε

, ε = 10−6

Notation. B: mini-batch; C1:t: all classes learned up to task t; Ct: classes introduced at task
t; P (c | x): predicted presence probability for class c; yc ∈ {0, 1}: image-level label; Mc, M̂c:
predicted / ground-truth masks; i: spatial index.

The full objective is L = Lcls + λLseg with λ=1.

Optimisation Schedule. Epoch 1 trains only the new classifier heads; the remaining epochs finetune
both classifier and segmentation heads. SGD (momentum 0.9, weight-decay 10−4), batch size 20,
initial LR 5× 10−3 with cosine decay is used.
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Algorithm 1 Inference Pipeline (per image)

Require: backbone Φ, multi-label head G, binary heads {Hc}
1: F ← Φ(x) ▷ shared feature map
2: p← G(F ) ▷ class-presence probabilities
3: Cpred ← { c | p[c] > 0.5 } ▷ or top-k
4: for all c ∈ Cpred do
5: Mc ← Hc(F ) ▷ binary mask for class c
6: end for
7: Mfinal ← U

(
{Mc}c∈Cpred

)
▷ mask fusion

8: return Mfinal

Inference. Because only |Cpred| segmentation heads are activated, inference cost scales with the
number of present classes rather than the total number of learned classes.
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