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ABSTRACT

Continual semantic segmentation (CSS) is a cornerstone task in computer vision
that enables a large number of downstream applications, but faces the catastrophic
forgetting challenge. In conventional class-incremental semantic segmentation
(CISS) frameworks using Softmax-based classification heads, catastrophic forget-
ting originates from Catastrophic forgetting and task affiliation probability. We
formulate these problems and provide a theoretical analysis to more deeply under-
stand the limitations in existing CISS methods, particularly Strict Parameter Iso-
lation (SPI). To address these challenges, we follow a dual-phase intuition from
human annotators, and introduce Cognitive Cascade Segmentation (CogCaS), a
novel dual-phase cascade formulation for CSS tasks in the CISS setting. By de-
coupling the task into class-existence detection and class-specific segmentation,
CogCaS enables more effective continual learning, preserving previously learned
knowledge while incorporating new classes. Using two benchmark datasets PAS-
CAL VOC 2012 and ADE20K, we have shown significant improvements in a
variety of challenging scenarios, particularly those with long sequence of incre-
mental tasks, when compared to exsiting state-of-the-art methods. Our code will
be made publicly available upon paper acceptance.

1 INTRODUCTION

Deep learning has transformed semantic segmentation into a cornerstone of computer vision, en-
abling influential applications from autonomous navigation to medical diagnostics. Despite these
advances, real-world deployment faces a fundamental limitation, i.e., the conventional paradigm
requires all object categories to be predefined before training. When new classes emerge, as they
inevitably do in dynamic environments, models must be retrained with training data of both old and
new classes, incurring increased computational costs and potential privacy concerns.

This limitation has driven substantial research in continual learning (CL), where models incremen-
tally acquire new knowledge while trying to preserve existing capabilities. The core challenge is
catastrophic forgetting: the tendency of neural networks to abruptly forget previously learned infor-
mation when updated. Current approaches span multiple paradigms, including regularization-based
methods Wang et al.|(2022); Xu et al.| (2021)) which constrain parameter updates, replay-based strate-
gies|Aljundi et al.|(2021); Rusu et al.|(2022)) which maintain historical exemplars, and optimization
techniques [Li et al.|(2022) which seek non-interfering parameter spaces. Among these, SPI |Serra
et al.| (2018) stands out for providing theoretical guarantee of zero-forgetting through parameter
compartmentalization, effectively addressing the stability-plasticity dilemma in classification tasks.

However, extending continual learning to semantic segmentation introduces unique complexities be-
yond classification. In particular in class-incremental semantic segmentation (CISS), models must
adapt to new categories while maintaining pixel-precise understanding of previous classes, all with-
out access to complete historical data. This setting introduces the challenge of background shift:
pixels belonging to future classes are temporarily labeled as background, requiring the model to
continuously revise its understanding of what constitutes “background” as new classes emerge |Cer-
melli et al.|(2020b). This continuous re-evaluation of the “background” class due to background shift
critically exacerbates the stability-plasticity dilemma, often compelling the model to make a detri-
mental trade-off between the forgetting of previously learned classes and the insufficient acquisition
of new ones, a challenge visually depicted in Figure
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While recently developed CISS approaches show promising performance in knowledge preserva-
tion, we prove that this localized optimization strategy, even assuming perfect preservation of knowl-
edge of past classes, structurally prevents convergence to the global optimum achievable through
joint training on all classes. Our theoretical analysis also reveals that they face fundamental limita-
tions. Architecturally, the commonly used task headers based on Softmax need to output complete
probabilities for all current class at every stage. However, the probability output for task segmen-
tation head is essentially local and is only optimized for the current task category. This creates a
stark trade-off: while freezing historical heads eliminates dynamic interference, it simultaneously
cements distributional biases that prevent global optimization.

Motivated by these theoretical analyses, we propose a Cognitive Cascade Segmentation (CogCaS)
architecture that fundamentally restructures the CISS paradigm. Our approach introduces two key
innovations, i.e., Existence-Driven Activation by which segmentation heads are activated only for
detected classes and thus background interference is eliminated, and Parameter Modularity by
which independent detector and segmenter per class enable isolated evolution without cross-task
contamination. Our implementation deliberately adopts elementary components: basic backbones,
single-layer detectors and simple segmenters, and standard loss functions. This architectural trans-
parency ensures that our empirical improvements stem purely from the cognitive cascade design
rather than implementation sophistication, while maintaining the framework’s extensibility for fu-
ture enhancements.

In summary, our main contributions include (1) the first systematic characterization of the advan-
tages and disadvantages of SPI strategy in CISS, (2) a cognitively inspired architecture that resolves
the stability-plasticity dilemma through decoupling design, and (3) state-of-the-art performance with
significantly increased margins particularly in challenging long-sequence continual learning scenar-
ios.
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Figure 1: Continual semantic segmentation performance for classes learned at each task. Our
method maintains stable mloU around 70%, demonstrating linear error accumulation, while other
methods experience a sharp decline as tasks increase, suggesting that existing methods struggle in
learning new classes over tasks.

2 RELATED WORK

Class-Incremental Semantic Segmentation (CISS) as a relatively new research topic is often con-
sidered as an extension of image-level continual learning, and therefore those techniques developed
originally for image-level continual learning have been adopted for CISS, including regulariza-
tion|Cermelli et al.|(2020a)), pseudo-labeling/self-supervision Xie et al.|(2024); Yang et al.| (2023a),
and experience replay |Cha et al.| (2021); Maracani et al.| (2021a); Yang et al.| (2023b)); [Zhang et al.
(2022b)). Such adoption is still being actively explored, as shown by very recent attempts [Yu et al.
(2025). All these methods model segmentation as per-pixel multi-class Softmax classification, where
old and new logits directly compete, causing background drift that accumulate with the number of
tasks [Farajtabar et al.|(2020) which can be seen in Figure[I]

To mitigate Softmax competition, several studies recast CISS as a pixel-level multi-label problem
combined with strict parameter freezing. Representative methods such as SSUL |Cha et al.| (2021))
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and IPSeg|Yu et al.| (2025)) append binary channels for each class and freeze them thereafter, achiev-
ing state-of-the-art performance with experience replay. In addition, built on Mask2Former |Cheng
et al.[(2021)), methods such as CoMFormer Cermelli et al.[(2023)) and CoMasTRe |Gong et al.|(2024)
treat CISS as a mask-classification problem. These methods first generate class-agnostic masks
and then classify each mask. Objectness transfer gives them better forgetting resistance than pixel-
wise classification, yet they still rely on distillation or replay and their old-class mloU degrades
markedly on long sequences. Qur CogCaS adopts existence-driven activation—decoupling ‘“‘does
class c exist?'"" from “segment class c''''—and freezes each class-specific segmentation head
after learning, achieving task-agnostic zero forgetting while maintaining high plasticity for
new classes.

3 METHODOLOGY

3.1 PRELIMINARIES

Notations. We consider the problem of Class-Incremental Semantic Segmentation (CISS), where a
model sequentially learns a sequence of 7T tasks, denoted as {77, ..., Tr}. Each task T is associated
with a unique training set D; which contains certain number of training images and corresponding
pixel-wise annotations. The task introduces a set of task-specific foreground classes C;, which are
mutually exclusive between tasks, i.e., C; N C; = () for all 7 # t. For each training image in
task 7;, each pixel is annotated as one of the task-specific foreground classes in C; or the special
“background” class. Notably for the training set Dy, all pixels not belonging to the foreground class
set C; are annotated as background. Thus, the annotated background regions in each training image
of task 7; encompass the true background as well as image regions corresponding to foreground
classes from past (77.;—1) or future (7;y1.7) tasks. When updating the model with the training set
D, and validation set D} of task 7;, the model needs to be expanded to account for the set C; of new
foreground classes. Let 8 denote the collection of all the learnable model parameters throughout the
continual learning process (from task 77 to 77). When the model learns task 7y, the part of @ which
are uniquely associated with future tasks (7;y1.7) are frozen with certain default value (i.e., zero
here). After updating the model based on certain task-specific loss function £;, the leranable model
parameters are changed from 0;_; to 8}, where 0 represents the locally optimal model parameters
that minimizes £,. The change in parameter values from 7;_; to 7; is denoted by A, := 6; — 6;_,
and the Hessian matrix of the loss function £, with respect to the learnable parameters 6 is denoted

2
by Hy(0) = 2542,

Convergence Assumption.To enable formal analysis of the CISS framework, we make the follow-
ing assumption about the learning dynamics.

Assumption 3.1 (Convergence for each task). For each task 7;, the optimization process converges
to a locally optimal model parameters 6}, such that within its neighborhood A/ (6} ), the magnitude
of the loss gradient V.£;() is bounded (smaller than €) and the Hessian matrix H;(0) remains
positive semi-definite, satisfying the second-order conditions for local optimality, i.e.,

Furthermore, it assumes that the magnitude of parameter updates satisfies |A;| < §, vVt < T, for
some small constant § > 0. When learning a new task (per Assumption [3.1)), the model’s perfor-
mance on prior tasks can degrade, a phenomenon known as catastrophic forgetting. To quantify
this, we will define the forgetting rate (see below) based on the change in the loss function, which
serves as a continuous and differentiable measurement function for task performance and reflects
generalization performance when evaluated on a validation set.

Definition 3.2 (Average Forgetting Rate). The forgetting rate for a previously learned task 7, (where
T < t) after the model parameters have been updated to 6, for task 7y, is defined as the change in
the loss evaluated on the validation set D?. Formally, it is given by &, (6;) = L£29(8;) — £244(67),
where £V% denotes the loss computed on the validation data for task 7,. By definition, this rate
is zero when evaluated at the task’s own optimal parameters, i.e., £-(6%) = 0. In the context of
continual learning, the locally optimal parameters 6 for task 7 may cause forgetting of knowledge
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from previous tasks 77.,_1. This effect is measured by the Average Forgetting Rate, defined as

1 t—1
E(07) = 7D &0 t>2. )
T=1

3.2 STRICT PARAMETER ISOLATION IN CISS

Based on Assumption [3.1] and Definition [3.2} the relationship between the average forgetting rate
for task 7; and 7;_; can be obtained as (see Appendix [B.T)

t—1

_ 1 - 1
E(07) = — ((t —2) & (070) + AT HA07) A + A) +O(-0, B
T=1

where vl = Z’;_:ll (07_1 — 02)TH.(0F). From Equation , it is clear that the average forgetting
rate £;(0;) of locally optimal parameters §; for task 7; is directly related to the average forgetting
rate &_1(0;_,) of locally optimal parameters ¢;_; for task 7;_;. With such relationship, we can
obtain the following zero-forgetting condition (see Appendix [B.T).

Theorem 3.3 (Zero-forgetting Condition). For any continuous learning algorithm that satisfies As-
sumption (1) if E.(0%) = 0, V7 < t, then E(0}) = ﬁAI (Z;;i HAG:‘)) Ay, and (2)
E-(07) = 0,Y7 < t, ifand only if AT(3' " HL(62))A; = 0.

Theorem [3.3] offers two significant implications for achieving zero forgetting. First, even if zero
average forgetting (£, (6%) = 0) is achieved for all previous tasks 7 < ¢ when evaluated at their
respective optimal parameters, learning a new task 7; and thereby updating parameters (resulting
in Ay # 0) can still cause considerable average forgetting. Second, Theorem (second half)
provides a direct mathematical condition for achieving true zero forgetting on all past tasks (i.e.,

E-(0F) = 0,V7 < t) after the model learns task 7, i.e., the quadratic term A (Zt_ll HT(H;E)) Ay

must be zero. Consequently, any continual learning algorithm aiming for zero forgetting must be
designed to ensure this quadratic term vanishes. Indeed, existing zero-forgetting methods, such
as orthogonal gradient method [Farajtabar et al.| (2020) and projected gradient method |Saha et al.
(2021)), work by satisfying such a condition (see details in Appendix [B.2)).

Strict parameter isolation (SPI) which is used in|Cha et al.| (2021)); 'Yu et al.| (2025) is a strategy that
can satisfy the zero forgetting condition in Theorem [3.3] By optimizing a unique set of parameters
for each new task while freezing those for previous tasks, the parameter update A, is guaranteed
to be in a subspace orthogonal to the parameters of all previous tasks. Consequently, the quadratic

term A (Zt_ll H.)A, is always zero, thus ensuring theoretical zero-forgetting.

T=

Although the SPI strategy can theoretically prevent catastrophic forgetting by isolating task-specific
parameters, its direct application in CISS introduces a critical challenge: the problem of incompa-
rable outputs. In the SPI framework, each task-specific segmentation head is trained independently
on a subset of classes. Consequently, the output logits from different heads are not mutually cali-
brated; a high score from one head is not directly comparable to a score from another trained on a
different task. This renders the standard approach of applying a simple argmazx operation across all
heads’ outputs to determine the final class for each pixel fundamentally flawed (also can be seen in
Figure 2 A)). This issue stems from the SPI model’s inability to determine a pixel’s task affiliation
before classifying it. This problem is conceptually analogous to challenges in image-level continual
learning. A prior study Kim et al.|(2022), for instance, factorizes the image-level prediction into an
intra-task prediction and a task affiliation probability. Borrowing this formulation for our pixel-level
problem, the prediction for a pixel y,, can be written as:

Pyp=c|x)=Pyp=c|x,Te) - P(T: | x), Vcel, 4

where p is the index of a pixel in the input image x, and ¢ is a class learned from task 7;. While SPI
perfectly preserves the intra-task prediction term P(y, = c|x, 7T;) due to its zero-forgetting nature.
There is no mechanism to estimate the crucial task affiliation probability P(7;|x), thus hindering
effective final prediction.
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Figure 2: Demonstration of existing typical CISS framework and the proposed CogCaS frame-
work. (A) Traditional CISS framework consists of a set of segmentation heads which are trained
sequentially and activated for inference simultaneously. (B) our proposed CogCasS restructures the
traditional CISS formulation into a dual-phase cascade using multi-label classifier and class-specific
segmentation head. The multi-label classifier determine whether each learned class exists in the
image, and only segmentation heads corresponding to existing classes are activated to produce a
foreground-background mask. These masks are then fused to obtain the final segmentation mask
using a mask fusion strategy.

3.3 CLASS-INCREMENTAL SEGMENTATION VIA COGNITIVE CASCADES

To resolve the issue of incomparable outputs in Equation (@) and fully leverage the zero-forgetting
property of SPI, we introduce Cognitive Cascade Segmentation (CogCaS), a novel framework that
fundamentally restructures the CISS paradigm. Our approach is motivated by the coarse-to-fine
strategy employed by human annotators who first identify the object categories present in an image
before delineating their precise boundaries. CogCaS mimics this cognitive process by decoupling
the problem into two sequential phases. First, an image-level classifier which acts as a Task Router
determines the existence of all learned classes within the input image. Second, only the parameter-
isolated segmentation heads corresponding to the detected classes are activated to perform binary
foreground-background segmentation. This restructuring can be formalized(in Appendix [B-4) by
reframing the probabilistic decomposition from Equation () into a more intuitive, class-centric
model:

Py, =c| x) x P(yp =c|x, c) -I(c € Cpred), Ve € Criy 5)

Binary segmentation Class existence

where Cpeq is the set of classes that Phase I’s multi-label classifier predicts as being present in the
image x and I(-) is an indicator functions.

The overall pipeline of this framework is depicted in Figure 2{B). An input image x is first passed
through a task-shared, frozen pretrained feature extractor ® to generate feature maps F' = ®(x).
Subsequently, F' is processed by the following two cascade phases.

Phase I: Image-Level Category Recognition. This phase is designed to infer the presence of
each learned class. We use a multi-label classifier which operates on the feature maps F' to yield
a class-existence probability P(c|z) for each learned class. The set of predicted classes Cpeq is
then identified by applying a threshold « to these probabilities. Specifically, we adopt a Sigmoid
function with a Binary Cross-Entropy loss, which is naturally suited for the multi-label classification
setting. To enable continual learning, each class-specific weight block ¢ is frozen after its corre-
sponding training task is complete. This design not only achieves Strict Parameter Isolation (SPI) to
circumvent catastrophic forgetting, but also fundamentally avoids the problem of cross-task output
comparison by directly learning independent class-existence probabilities.
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Figure 3: Representative segmentation results from different methods after the model learns all tasks
in the Pascal VOC 2012 15-1 setting.

Phase II: Class-Specific Binary Segmentation. This phase is responsible for estimating the con-
ditional segmentation term, P(y, = c|x,c). For each class ¢ € Cp,¢q identified in Phase I, its
dedicated and parameter-isolated segmentation head H.(-) is activated. This head takes the feature
maps F as input and produces a two-channel probability map, M, = (mb9, m{ 9), representing
the probability of each pixel belonging to the "relative background for class c" and the "foreground
for class c," respectively. The binary segmentation schema offers key advantages: it simplifies the
complex multi-class decision boundary into a single binary decision boundary, leading to faster con-
vergence and higher fidelity. Since this process yields a set of independent binary masks (one for
each predicted class), a subsequent fusion step is required to integrate them into a final coherent
multi-class segmentation map. This involves assigning a single predicted label to each pixel, espe-
cially in cases of overlapping predictions. The specific fusion strategies employed and their impact
on the final results can be found in our experimental analysis in Section §.4]

4 EXPERIMENTS

4.1 SETUP

Datasets. Following prior work |(Cermelli et al.| (2020a); (Cha et al.| (2021); [Maracani et al.| (2021b));
Yang et al.| (2023a)), the proposed CogCaS was evaluated on two semantic segmentation datasets
PASCAL VOC Everingham et al.|(2010) and ADE20K [Zhou et al.|(2017)) with different complexity
levels. PASCAL VOC contains 20 object classes plus a background class, with 10,582 samples for
training and 1,449 samples for validation, while the large-scale dataset ADE20K presents a more
challenging scenario, containing 150 foreground classes and one background class, with 20,210 and
2,000 samples for training and validation, respectively.

CISS Settings. With each dataset, the widely used M-N setting is adopted, with M being the
number of foreground classes in the first task and /N the number of new foreground classes in each
subsequent task. For example, in the VOC 10-1 setting, the model first learns to segment 10 classes,
then incrementally learns one new class in each subsequent task.

Implementation details. The proposed CogCaS was trained using 8 NVIDIA GeForce RTX 4090
GPUs. We conducted training on models utilizing both ResNet-101|He et al.|(2016) and Swin-L Liu
et al.| (2021)) backbones. The Adam optimizer Kingma & Ba|(2015)) was employed for training, with
each task being trained for 90 epochs. The initial learning rate was set to 1 x 10~5. More details
can be found in the Appendix
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Table 1: Comparison with exsiting CISS methods on PASCAL VOC 2012 in mloU (%). The best
results are marked in bold. o: ResNet101 backbone. ¢: Swin-L backbone. {: unlike other methods,
this one is based on Mask2Former |Cheng et al.|(2021).

Method 10-1 (11 tasks) 15-5 (2 tasks) 15-1 (6 tasks)
0-10 1120 all | 0-15 16-20 all | 0-15 16-20 all
Ourso 739 702 721|755 703 741 | 755 714 744
Joint Deeplab-v3o Chen et al.|(2017) | 784 764 774 | 798 724 774 | 798 724 774
Joint Ourso 793 776 784 | 792 762 784 | 792 762 784
LwF-MCo [Rebuffi et al.|(2017) 4.7 5.9 50 | 581 350 523 | 640 84 6.9
ILTo Michieli & Zanuttigh|(2021) 7.2 3.7 55 | 67.1 392 605 | 88 8.0 8.6
MiBo|Cermelli et al.|(2020a) 315 131 227 | 71.8 433 647 | 462 229 407
MiB+NeSTo [Xie et al.|(2024) 394 21.1 306 | 755 487 695 ] 60.2 299 53.0
PLOP o |Douillard et al.|(2021) 440 155 305|754 496 693 | 641 20.1 53.1
PLOP+NeSTo|[Xie et al.|(2024) 472 163 324 | 776 558 724 | 672 257 573
BARMo |Zhang & Gao|(2024) 722 498 619|749 695 736|773 458 619
PLOP+LCKDo|Yang et al.|(2023a) — — — | 752 548 71.1| 693 309 6l1.1
SSULo|Cha et al.|(2021) 713 460 593|778 501 712|773 366 67.6
RCILo [Zhang et al.|(2022a) 554 151 343|788 520 724|706 237 594
IDECo Zhao et al.[(2023) 70.7 463 59.1 | 780 51.8 718 | 77.0 365 673
Ourso 761 75.7 759 | 783 749 778 | 784 725 769
Joint Deeplab-v3¢|Chen et al.|(2017) | 814 784 799 | 80.8 773 799 | 80.8 773 79.9
Joint Ourso 827 809 81.8 | 813 834 818|813 834 818
MicroSego|Zhang et al.|(2022b) 735 530 638|819 540 752|805 408 71.0
MiBo |Cermelli et al.[(2020a) 357 148 267 | 743 451 673 | 487 195 417
MiB+NeSTo | Xie et al.|(2024) 413 241 331|778 501 712|632 235 537
PLOP¢ |Douillard et al.|(2021) 472 184 335|792 502 723|676 252 576
PLOP+NeSTo|Xie et al.|(2024) 492 198 352 | 81.6 558 754 | 722 337 63.1
BARMo |Zhang & Gao|(2024) 742 538 644|778 721 764 | 793 481 718
SSUL¢|Cha et al.|(2021) 743 51.0 632|797 553 739|781 334 675
CoMasTReoT|Gong et al.|(2024) — — — | 79.7 519 73.1 | 698 436 635
CoMFormerof|Cermelli et al.|(2022) — — — | 747 543 71.1| 708 322 616

Table 2: Comparison with existing CISS methods on ADE20K using Swin-L backbone. t: unlike
other methods, this one is based on Mask2Former|Cheng et al.| (2021).

Method 100-50 (2 tasks) 100-10 (6 tasks) 100-5 (11 tasks)
0-100 101-150  all \ 0-100  101-150  all \ 0-100 101-150  all
Ours 412 294 373 | 423 25.6 36.8 | 40.1 24.7 35.0
Joint Deeplab-v3 Chen et al.|(2017) | 47.2 31.8 42.1 | 472 21.8 42.1 | 472 21.8 42.1
Joint Ours 47.8 38.7 447 | 47.8 38.7 447 | 478 38.7 44.7
MiB |Cermelli et al.|(2020a) 39.0 16.7 31.2 | 36.6 9.8 27.7 | 347 4.8 24.7
MiB+NeST Xie et al.|(2024) 38.8 23.1 335 | 388 19.1 322 | 352 13.6 28.1
PLOP Douillard et al.|(2021) 404 13.4 315 | 394 12.6 30.1 | 369 6.2 26.7
PLOP+NeST Xie et al.|(2024) 40.8 22.8 348 | 394 20.5 332 | 383 154 30.7
BARM |[Zhang & Gao|(2024) 42.0 23.0 357 | 41.1 23.1 352 | 405 21.2 34.1
FALCON/|Truong et al.|(2025) 45.9 29.1 403 | 41.1 23.2 352 | 40.8 18.9 335
CoMFormerf |Cermelli et al.|(2023) 44.7 26.2 38.4 | 40.6 15.6 323 | 395 13.6 30.9
CoMasTRet|Gong et al.|(2024) 45.7 26.0 39.2 | 423 18.4 344 | 408 15.8 32.6

4.2 MAIN RESULTS

Experimental results demonstrate the efficacy of the proposed CogCaS method on the PASCAL
VOC 2012 and ADE20K datasets, as presented in Table [I]and Table [] respectively.

Our CogCasS as a non-replay method was compared with basic and state-of-the-art non-replay base-
lines. As Table [T] shows, on the PASCAL VOC 2012 dataset, CogCaS exhibited superior perfor-
mance across various incremental learning configurations. For example, in the VOC 10-1 setting (11
tasks), CogCaS achieved the highest mean Intersection over Union (mIoU) of 70.2% for new classes
(11-20) and a leading overall mIoU of 72.1%. The superiority of CogCaS was more pronounced on
the complex ADE20K dataset across all evaluated incremental settings (Table[2)). Figure [3] visually
confirms the superior performance of our method. These results consistently support the efficacy
of our CogCasS in learning new knowledge and preserving old knowledge in both small-scale and
large-scale incremental scenarios.
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Table 3: Comparison with existing CISS methods under more challenging continual learning set-
tings.

VOC 1-1 (20 tasks) VOC 2-1 (19 tasks) VOC 2-2 (10 tasks)
0-1 2-20 all \ 0-2 3-20 all \ 0-2 3-20 all

Ours 794 701 709 | 763 712 719 | 759 708 715

MiB |Cermelli et al.|(2020a) 273 64 83 | 236 79 10.14 | 411 234 259
PLOP|Douillard et al.|[(2021) | 254 4.2 62 | 194 62 8.1 39.7 228 252
MiB+NeST Xie et al.|(2024) 28.1 6.8 87 | 245 8.1 104 | 404 258 278
PLOP+NeST [Xie et al.|[(2024) | 32.5 4.6 73 201 79 10.5 | 38.1 235 255
SSUL |Cha et al.|(2021) 60.1 29.6 325 | 596 347 382 | 603 40.6 44.0
IPSeg|Yu et al.|(2025) 61.8 302 332 | 60.1 326 362 | 647 495 514

Method

Table 5: Ablation experiments with respect to the classification head using parameters trained under
different task settings

VOC 1-1 (20 tasks) VOC 2-1 (19 tasks) VOC 2-2 (10 tasks)  ADE 100-5 (11 tasks)

Method ‘ 01 220 all | 02 320 all |02 320 al |0-100 101-150 all
Segmentation Only | 182 13.1 13.5 | 143 172 167 | 138 165 161 | 6.7 95 16
Full Model 794 701 709 | 763 712 719 | 759 708 715 | 400 247 350
Oracle 802 703 712 | 774 715 723 | 774 718 724 | 486 318 430

To further confirm the robustness of our method, experiments under more challenging conditions
were performed in which tasks are more numerous with fewer classes to be learned within each
class. As Table [3] shows, our CogCaS significantly outperforms traditional knowledge distillation
methods (MiB, PLOP, and NeST variants) and parameter-isolation strategies (SSUL, IPSeg). For
example, in the VOC 1-1 setting (totally 20 tasks), our method achieves 70.9% overall mloU versus
only 7.3% for PLOP+NeST and 33.2% for IPSeg. In the VOC 2-2 setting (10 tasks), our method
reaches 71.5% compared to 27.8% (MiB+NeST) and 51.4% (IPSeg).

These results clearly demonstrate our CogCaS Table 4: Phase I class-existence detection on the
can well learn new classes and preserve old evaluation split (%). Results are averaged across
knowledge even in a long CISS learning process. all settings in the datasets.

To make the first phase explicit, Table [] sum- Dataset mAPt  Prec.t Rec.t
marises class-existence detection metrics (mAP, PASCAL VOC 2012 8208 9233 88.70
precision, and recall) on both benchmarks. ADE20K 6951 7348  47.50

4.3 ABLATION STUDIES

To assess the practical impact of the classification head during inference, we conducted comparative
experiments with three distinct model configurations. The first, termed the “Full Model”, utilizes the
complete model architecture. The second, the “Segmentation Only” version, deactivates the classi-
fication head during testing, relying solely on the segmentation heads learned during training. The
third, the “Oracle” version, substitutes the classification head’s output with ground truth labels to
isolate the component’s error contribution. By comparing these three settings using standard seman-
tic segmentation metrics, we can precisely determine the classification head’s actual contribution
and significance to our decoupled segmentation framework at test time.

The ablation experiments of this study in Table [5] show that there is just small difference in per-
formance between the “Oracle” configuration (using real labels) and the “complete model” (for
example, both are 70.9% and 71.2%), indicating that the multi-label classifier of the model can ef-
fectively handle the 20 categories of VOCs. However, the performance of the “segmentation only”
configuration declined, indicating that learning the relationship between foreground and background
remains a challenge even with the inclusion of near-OOD data during training.

On the ADE20K dataset with more complex categories (150 classes), the mloU configured with
“Oracle” (43.0%) was significantly better than that of the “Full Model” (35.0%), revealing that the
classifier encounters challenges when facing a large number of categories, and its errors have a sig-
nificant impact on the segmentation performance. These results jointly prove that the classification
head is a key component in this decoupling framework. Especially when there are many categories,
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its accuracy is crucial to the final segmentation effect, and removing the classification head usually
leads to performance loss.

4.4 SENSITIVITY STUDY

Mask Fusion Strategy Analysis. To
handle overlapping predictions in seg-
mentation masks, we evaluate five fu-

Table 6: Sensitivity analysis of mask fusion strategies
on VOC across three incremental settings. Results are

. - ! reported in mIoU (%).

sion strategies: (1) Logits-based: se-

lects the class with highest confidence; Fusion Strategy _ VOC 10-1_VOC 155 VOC 15-1

2) Ranc.z'om. rapdgmly chooses. among Logits-based — 733 734

overlapping predictions; (3) Strict: as- Random 71.9 732 73.9

signs overlapping pixels to background; Strict 70.9 72.8 73.0
.. . Distributed (Ours) 72.1 74.1 74.4

(4) Distributed: prioritizes rare cate- Loose 728 749 752

gories to preserve small objects; and
(5) Loose: accepts predictions containing the ground truth category. As shown in Ta-
ble [6] the Loose strategy achieves superior performance across all settings, followed by
our Distributed approach. The Logits-based and Random strategies show comparable re-
sults, while Strict performs worst due to its conservative background assignment. These re-
sults demonstrate the importance of appropriate overlap handling in incremental segmentation.

4.5 ADDITIONAL STUDY

Due to limited resources and time, our further
investigations focused on the challenging 2-2

settings on the VOC dataset. To further vali- 2-2 setting

date our method, we unfroze the Encoder’s fi- 80 o

nal bottleneck layer, making it task-shared and 70 BT

trainable, as shown in Figure E} Manually set- @60 \‘\\

ting these task-shared parameters did not af- <3507 IS

fect new class learning (matching baseline per- =2 40 b 7 T
formance). However, this configuration, when g 30 P

combined with SPI, resulted in catastrophic for- 20 S

getting, evidenced by a 37% drop in mloU. By 100 S et P e L
intentionally disrupting the SPI settings, we ob- Y I —
served that while new classes learned normally, 1 2 3 4 5 6 7 8 9 10

old classes experienced catastrophic forgetting. Tasks

This observation, in reverse, further substanti- ) ) )

ates the correctness of our proposed method. Figure 4: This figure shows the impact on the
What’s more, adding class-specific LoRA to model performance when the task-shared param-
the backbone, the improvement obtained by our ~ €ters are set.

method is not significant (only improve 1%

mlou), but the parameters need to be changed with the task, which will significantly increase the
inference time.

5 CONCLUSION

This study provides a theoretical analysis to deeply understand the limitations within existing CISS
methods and introduces a novel dual-phase CISS framework in which the segmentation task is de-
composed into two disentangled stages. Crucially, the SPI strategy inherent in our design enables
the framework to achieve a zero-forgetting rate for knowledge learned in previous tasks. Conse-
quently, the model’s performance is not significantly affected by the number of tasks in the CISS
setting, showing notable robustness in challenging, long-sequence scenarios where other methods
falter. A primary limitation is that although our model’s performance can approach the upper bound
set by joint training, it demands substantial training resource. Future work includes the investiga-
tion of class-specific fine-tuning of the feature encoder for other imaging modalities (e.g., medical
images) and applying existing foundational models such as Segment Anything Model (SAM) as the
segmentation heads in the proposed framework.
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistant. The role of the LLM was strictly limited to language polishing, which included improving
grammar, clarity, and overall readability. The LLM did not contribute to the research ideation,
experimental design, methodology, or analysis of the results. All authors have reviewed the final
text and take full responsibility for the content of this paper.

B THEORETICAL ANALYSIS OF DYNAMIC BACKGROUND SUPERVISION

B.1 FORGETTING RATE

For the forgetting rate in Definition the average forgetting rate £, (6)is defined as the arithmetic
average of the forgetting rates of historical tasks:

Ex(0) = L3(0) — £3°(67)

Applying Taylor expansion to the above equation gives us:

E-(0) = (0= 0)TVLI(07) + % (0 = 07)TH-(07)(0 — 07) + O([10 — 0;]) (6)

In Equation (6):

» First order (6 — 0)TV L2 (0%): said loss function near the optimal parameters of linear
change;

* Second order terms 1 (6 — 67)T H,(67)(6 — 6): by Hessian Matrix H.(6}) said the local
curvature of loss function;

* high order events O( || — 6%||®): said the higher order nonlinear effects.

In Assumption VL, (0%) < ¢, including € is a limitless tends to zero (in the optimal parameter
0% , The gradient of the loss function has gone to zero), so the first-order term in the Taylor expansion
is ignored, and the forgetting rate is dominated by the second-order term:

£:(6) = 5 (60— 02T HL(6)(6 — 65) + 010 — 05 ) )

For two specific tasks 7, jand the optimal parameters ¢on the tasks j(assuming that the parameters

vary within a range of d, That’s |0 — 0;|| < §) (we’ve added the range of the parameter to our as-
sumption). We find that based on Equation (7)), this forgetting rate can be simplified to Equation (8},
and the simplified formula is as follows:

13



Under review as a conference paper at ICLR 2026

* 1 * * * * *
52’(9;') = §(aj - 9i)THi(9i)(9' - 91‘) + 0(53)
1({ < !
:2<ZAT> H, (0 (ZA>+(’)63)
T=1+1 T=1+1
1 i-1 T j—1
=3 (Aj + AT> H, (67) (Aj+ > AT> +0(6%)
T=1+1 T=1+1
112 ! i 1
=3 < AT> H,(67) < > AT> +5 ATH; (07)A,
T=1+1 T=14+1
8'(9* 1)
(Z A) H;(07)A; + ATH (07) (Z A>+(953)
T=1+1 T=1+1

= &0 + 5 AH 01)A (Z A) H;(07)A; + O(6%)

T=1+1

The Forgetting rate for task ¢ and optimal parameter §; can be expressed as Equation (8)

E:(07) = E(05-1) + 5 ATH 6:)A, + ( >oA ) H;(07)A; + O(6%) (8)
T=1+1
In Equation (8)), it consists of several parts: past forgotten rate: &; (6 - 1), namely after the com-

pletion of the task j — 1 for task ¢ forgotten; independent effects of the current parameter update:

%AJT- H;(0;)A;, directly caused by the parameter update A ;of task j; interaction between historical
T

and current updates : (ZT i1 ) H,(6;)A;, which reflects the nonlinear superposition effect

of the parameter update sequence, and represents the inner product of the historical update and the
current update. If the two directions are negatively correlated under the measure of H;(6;)(e.g.,
orthogonal or reverse), forgetting may be alleviated. On the contrary, if the direction is consistent,
the forgetting is aggravated.

Similarly, for the average forgetting rate & (0;) = 727 S, £(6;), we can also simplify it through
Equation
t—1

&7 = 22 (&( 1)+ gATHL ()8, + ( 5 Ao> H, (0; >At> +0(%)

T=1 o=7+1
1 t—2 1 t—1 T
= (Z( (07-1)) + 5 ZAJHT 05)A, +Z ( > Ao> wai)At) +0(5%)
=1 7=1 \o=7+1

t—1 t—1
t—2 2 . 1 . 1 . . .
= o)+ oA (Z HT(97)> Ap+— [ D0 —0)TH(6)) | A,

T=1

+0(5*)

1

- — ((t—Q)é} H(07_,) + A ZH At+utAt> +0(5%)

In the above simplification, each average forgetting rate has a specific v, which we denote as v,
representing that it belongs to &£;(6;)

14
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t—1

_ 1 - 1
&) = <(t = 2)-Ea(070) + AT HA, + ngt> +06%) )
o=1

From this equation, we can observe that the average forgetting rate for task ¢, & (6;), is influenced
by three principal terms (ignoring the higher-order term O(§2)) that are averaged:

o (t—2)-&_1(0;_,) relates to the average forgetting rate of the immediately preceding task.

AT(Zt ! 1 H%)A, captures the impact of the parameter change A, in conjunction with
the cumulatlve Hessian matrices from all prior tasks (fromo = 1tot — 1).

Building on these observations, a further hypothesis can be formulated: It is proposed that if the
average forgetting rate for each task from £ = 2 up to k = ¢ — 1 is zero (i.e., the first two items in
E,(05) is zero for all k € {2,3,...,t — 1}), then for the current ¢-th task, the component vTA; is
also hypothesized to be zero.

We will use mathematical induction to prove this hypothesis. At first, we suppose the first two terms
of £3(63) are both 0, then we can get v3 = 0:

E3(03) = % (1 -E5(603) + %Ag(Hz(ag) + H1(67))As + 2(92 - Ot)THt*A3>

t=1
. :
=0+ fAT( H(03) + Hl(e*))Ag + = ATHl Az + = (0T 02) Hf A3
2 \_\/_./ \_v_/

=0 =0

Then, we suppose the first tow terms of &_1(6;_; ) is zero, we find that:

t—1 t—2

ve— v =Y (051 = 0;)TH, (0;) = > (07, — 03)TH, (6)
o=1 o=1
t—2

—Z L= 0)TH, (6) ~ Y (675 — 03)TH, (6))

o=1

= Z( 0 — 0, +02)TH, (6))
o=1

Since in &_1(0;_,), lAtT 1 Zt *H, (0*) Ay—1 =0, So we find that: v; — v;_1 = 0.
Also we can get the conclusion that:

t—2

U — Vt—1 :Ag_1 ZHT(GD (10)

T=1

We can say that if £, (0) = 0, V7 < ¢, then &,(0}) = 2“ 0 AT (Zt L H, (6 )) Ay, which is show
in Theorem[3.3](1).

In Theorem (2), we need to proof the statement: &,.(0;) = 0,Vr < t <=
Al (Zi,_:ll HT/(GL)) A; = 0. Itis clear that when &, (0}) = 0,V < t, then £,(0}) = 0,V < t,

using conclusion in Theorem 1), we can get the result: AJ (Zi;ll HT/(Qj,)> A; =0.

When AT (Zi,:ll H /(9*,)) A; = 0, using Assumption all Hessian matrix H, (6%) is positive

semi-definite, then we have: AT(}"7— 1H -(0%)) = 0,V7r < t, using Equation l| we have:
vy < g+ < vy < vpyq. In definition, £(63) is zero, and E5(03) = %Ag(Zizl H,0;)As =0,
we have 5,5(9;*) = 0 which can say that £, (0}) = 0,V7 < t
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B.2 OTHER ZERO FORGETTING STRATEGY

B.2.1 ORTHOGONAL GRADIENT METHOD

We follow the setting of the paper [Farajtabar et al.| (2020), where £ is a non-negative loss func-
tion(CE or BCE loss). We also assume that the symbol fy represents the parameter ¢ used by the
model (f§(x) means one of the output’s channel which is about class ¢) and N; represents the total
amount of data used in the tasks from 1 to ¢.

In Orthogonal Gradient Method [Farajtabar et al.| (2020)), they want to address catastrophic forgetting
in continual learning by keeping the updates for a new task orthogonal to the gradient directions
associated with previous tasks’ predictions. Formally, equal to Equation (TT).

(AL Vor  fo (2:)) =0 Ve Cpyapar € Dry7 <, (11)

where A¢ denotes the the i-th step for update.

Due to the previous studies [Schraudolph| (2002), the hessian matrix of the loss can be decomposed
as two other matrices: the outer-product Hessian and the functional Hessian, and at the optimum
parameter for loss function, the functional Hessian is negligible Singh et al.|(2021]). So we can write
the approximation of the Hessian matrix under the optimal parameters in task 7:

N,
HL(0) = = D Vou or (00 (VLo (0, 0)) Vi £ )T
Ti=1

When the parameter update follows Equation (TT), it essentially satisfies the condition that the bi-
nomial is 0 mentioned in our zero forgetting condition in Theorem [3.3]

B.3 WHY PARAMETERS ISOLATION IS ZERO FORGETTING

We find that when the SPI strategy is used, the sum of the historical Hessian matrix(zt;:l1 H.(0%))
is similar to a semi-positive definite block diagonal matrix to its parameter subspace:

H,(0) 0 0 0

0 H,(03) 0 0

t—1 . 0
ZlHT(GT) =1 o 0 H, (07 ,) o (12)

0 0 o 0 0 0

Where:

* According to Assumption Each H. (6*) on the diagonal is a square matrix representing
the Hessian for task 7 and is a semi-positive matrix. The dimensions of H, (6%) correspond
to the number of new parameters introduced for task 7.

* The 7 symbols represent zero, indicating that the Hessian components for parameters of
different tasks are decoupled due to SPI strategy.

Just as expressed in Equation lb the sum of the historical tasks’ Hessian matrices Zt;:ll H.(0)
and the parameter update for new task A; are not in the same subspace, and the product between
them must be 0 which is the zero forgetting condition in Theorem [3.3]

B.4 CASCADE MODELING

We start from the task-level factorization introduced in Equation (@):
Py, =c|x)=Plyy=c|x, T) P(T; | x), ceCy,

where T; denotes the task that first introduced class c¢. Under SPI, classes are disjoint across tasks:
C,NC, = forall T #t.

16



Under review as a conference paper at ICLR 2026

Lemma B.1 (Task Prior Decomposition). For any image X,

P(T;|x) =) P(c|x), (13)

ceCy
where P(c | x) represents the probability that class c exists somewhere in image Xx.

Proof. Since classes in C; are mutually exclusive and task 7; is active if and only if at least one class
from C; appears in x, we have

P(7;|x)—P<U c|x> =Y Plc|x)
c€Cy ceCy
by the law of total probability. O

From Task-Level to Class-Level Factorization The task-level factorization necessarily reduces
to a simpler class-level form that eliminates the problematic task prior P(7; | x).

Theorem B.2 (Cascade Factorization). For any pixel p, class ¢, and image x:

P(yp:c|x):P(yp:c|x, c)P(c\x). (14)

Proof. Substituting Lemma [B.T]into the original task-level factorization:

P(yp:c|x):P(yp:c|x,7Z) ZP(C/|X).

c’e€Cy
Expanding the conditional probability using the law of total probability:

Py =c|x, T) = Y Py, =c|x, d)P(c % T).

c’'eCy

The key insight: if class ¢’ is not present in the scene, no pixel can be labeled as ¢’. Therefore,
P(y, =c|x, ) =0forall ¢ # c. Only the term ¢/ = ¢ survives:

P(ypzc‘x77;):P(yp:C‘X7C)P(C|X,7;).

Since class ¢ existing implies task 7; is active, by Bayes’ rule:

P<c|x,7z>]f((7§'|’j3).

Substituting back into the first equation, the task prior P(7; | x) cancels out, yielding:

Py, =c|x) =Py, =c|x, ¢)P(c|x).
O

Implications for CogCaS Architecture Theorem proves that under SPI, the cascade fac-
torization in Equation (I4) is the unique probabilistically consistent decomposition. This directly
motivates our two-phase CogCaS design:

* Phase I: Multi-label classifier estimates class existence probabilities P(c | x)

* Phase II: Binary segmentation heads model conditional segmentation P(y, = ¢ | X, ¢)

This decomposition eliminates the ill-defined task prior, enables complete parameter isolation for
zero-forgetting, and aligns with optimal Bayesian factorization principles.
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Figure 5: The figure illustrate near-ood samples and process.

B.5 TRAINING AND INFERENCE

CISS Training. For every new task 7}, we append one multi-label classifier head and one class-
specific binary segmentation head (Deeplab-v3’s ASPP module + 1 x 1 conv) for each unseen class
¢ € Cy, while all previous weights are frozen (*Strict Parameter Isolation™).

Furthermore, during the training stage, we manually construct near-out-of-distribution (near-OOD)
data based on the data available for the current task to enhance the model’s robustness. As illustrated
in the Figure 5} this process is divided into two distinct stages: Phase I and Phase II. It is important
to note that our model is trained separately in these two phases.

Joint Training. In the joint training setting, we first train the classifier in Phase I. After the training
for Phase I is complete, because we have access to the full dataset, we then select corresponding out-
of-distribution data for each class-specific segmentation head in Phase II. This data is chosen from
the dataset at a 1:1 ratio, and we ensure that for a specific class, its corresponding OOD samples do
not contain any information about that class in any single pixel.

Parameter Overhead. Each additional class contributes ~ 1.37 M parameters (5.24 MB at FP32),
corresponding to 3.1 % of a ResNet-101 backbone (44.5 M params) and 4.9 % of a Swin-T backbone
(28 M params); even for the larger Swin-B (88 M params) the overhead per class is merely 1.6 %.

Loss Functions. Classification and segmentation are optimised separately and then summed:

Ecls:%ZZBCE (c| ),y )

zEB cECyt
Lseg = ﬁ Z Z [a Focal(M,, Mc) + 8 Dice(M,, Mc)}
z€B ceCy
Focal(Me., M) = — Z |0 Mei(1 = M) og(Mei) + (1= a)(1 = M) (V) Tog(1 = M)
. 25" M; M; _
Dice(M, NT) = — 22 re  e—10®

S0 M+ 30, M+ ¢

Notation. B: mini-batch; Cy.4: all classes learned up to task ¢; C;: classes introduced at task
t; P(c | x): predicted presence probability for class ¢; y. € {0,1}: image-level label, M., M,:
predicted / ground-truth masks; ¢: spatial index.

The full objective is £ = Lejs + A Ly With A=1.

Optimisation Schedule. Epoch 1 trains only the new classifier heads; the remaining epochs finetune
both classifier and segmentation heads. SGD (momentum 0.9, weight-decay 10~%), batch size 20,
initial LR 5 x 103 with cosine decay is used.
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Algorithm 1 Inference Pipeline (per image)

Require: backbone ®, multi-label head G, binary heads { H,.}

Miinal < u({MC}CGCpl‘Cd)
return Mg,

> shared feature map

> binary mask for class ¢

> mask fusion

1. F«+ ®(z)

2: p« G(F) > class-presence probabilities
3: Cpred < {¢| P[] > 0.5}

4: for all ¢ € Cpreq do

5. M, <« H.(F)

6: end for

7:

8:

Inference. Because only \Cpred| segmentation heads are activated, inference cost scales with the

number of present classes rather than the total number of learned classes.
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