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Abstract. Adding LiDAR for an autonomous driving system will com-
plement the weaknesses of a camera-only solution and enhance its robust-
ness. To fully exploit the multimodal advantage, existing works have pro- AQ1

posed various multimodal fusion algorithms to effectively combine LiDAR
and camera data for scene and object recognition through 3D semantic
segmentation. However, most of these methods leverage softmax-based AQ2

attention modules for intra-modal feature encoding, and early fusion
for inter-modal feature learning, leading to excessive computations and
therefore higher latency in semantic segmentation. To mitigate this chal-
lenge, we propose the Semantic Segmentation (S2) Agent attention mod-
ule for 3D semantic segmentation in autonomous driving system using
LiDAR and camera. Intra-modal encoding is fully explored instead of early AQ3

fusion using feature concatenation. We adopt a mid fusion strategy to fur-
ther reduce computations. Experiments using open benchmark datasets
nuScenes and Semantic KITTI show comparable or even better mIoUs
than state-of-the-art baseline methods while obtaining better latency per-
formance when compared to the most recent MSeg3D algorithm.

Keywords: Semantic Segmentation · LiDAR · Autonomous Driving ·
Multi-modal Fusion

1 Introduction

Autonomous driving is a pivotal field, in which the integration of 2D imagery
with LiDAR 3D point clouds is instrumental in providing a comprehensive and
robust understanding of driving scenes. On one hand, images captured by multi-
ple cameras offer rich color and texture information about objects and environ-
ment, and have been leveraged as a mature scene understanding solution through
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2 S. Zhang et al.

semantic segmentation way before LiDAR became widely available [12,23,25].
On the other hand, point clouds generated by LiDAR can capture precise spatial
information about objects, and is insusceptible to changing time and weather
conditions such as darkness during night time and invisibility caused by thun-
derstorm. Two main categories of representation learning algorithms in point
cloud data are direct methods [3,8,26] and projection-based methods [6,21].

To fully explore the superiority of combining LiDAR and camera data
for semantic segmentation, deep learning-based feature encoding [5,16] and
attention-driven modality fusion [9–11] have served as the mainstream methods
in recent years. Specifically, various backbone networks have been adopted to
extract unimodal representation from either 2D images or 3D point clouds. For
example, Sun et al. proposed a high-resolution representation learning method
HRNet to extract image features [16]; while Çiçek, Özgün et al. proposed the
3D U-Net that can be adopted for feature extraction in 3D point clouds [5].
With these unimodal representations, Li et al. proposed a semantic segmenta-
tion method MSeg3D for LiDAR and camera data fusion [10]. MSeg3D is able to
address three common challenges existing in multi-modal segmentation model.
Taking advantage of different representations in point cloud data, Liu et al. pro-
posed the UniSeg algorithm for more robust and accurate perception in scene
recognition for autonomous driving [11].

Despite the above progress, computational efficiency still has room for further
improvements First, due to the massive amount of data in point clouds and the
adoption of the softmax-based attention modules, the process of multimodal
feature extraction and integration becomes computationally expensive [7]. In
addition, during feature learning, the multimodal techniques often concatenate
encodings from different layers within each modality. Although this will enrich
the representations for final inference, it greatly expands the dimensions for
all the input vectors to the attention modules, leading to significant increase
in computational burden [14]. At the same time, early fusion of inter-modal
features not only generates additional computation overhead (i.e., larger input
vectors for cross-modal attention modules), but also reduces the efficiency for
modal fusion, as the cross-modal attention module has to learn encodings from
much lower level feature space.

To address the aforementioned problems, we adapt the agent attention mod-
ule from [7] for general computer vision tasks to the 3D semantic segmenta-
tion task using LiDAR and camera. The simplified agent attention module is
called Semantic Segmentation Agent (S2A) attention. The introduction of agent
tokens within S2A attention module significantly reduces the computation com-
plexity when compared to softmax-based attention (i.e., the typical attention
module proposed in [17]). We stack multiple blocks of S2A attention modules
for unimodal features extraction using input features learned by backbone neu-
ral networks instead of concatenating features from each modality to lower the
dimensions of input vectors to each attention module. This intra-modality fea-
ture encoding strategy is followed by the mid fusion strategy enlightened by [14]
for the voxel features and image features. With the above measures, we are able
to reduce the segmentation latency while achieving comparable or even better
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S2A-Attention for Multimodal 3D Semantic Segmentation 3

Fig. 1. Framework Overview. 0. Unimodal representation extraction (URE) obtains
embeddings and spatial features of different modalities. 1. Intra-modality Feature
Encoding (IntraMFE) aggregate intra-modal features by stacking S2A attention blocks.
2. Mid-Fusion fuses embeddings from different modalities via cross attention instead
of concatenation to reduce computational loss. 3. Inter-modality Feature Learning
(InterMFL) performs information fusion of all modality streams.

segmentation performance when compared to the state-of-the-art 3D semantic
segmentation baseline methods.

Our contributions in this work can be summarized as follows: 1) We pro-
pose a new agent attention module called Semantic Segmentation Agent (S2A)
attention to reduce computation complexity for 3D semantic segmentation using
LiDAR(s) and cameras. 2) We combine the intra-modality feature encoding
strategy using S2A attention modules with the mid fusion strategy to improve
segmentation speed in an end-to-end 3D semantic segmentation network for
autonomous driving. 3) We evaluate our proposed network in two public bench-
mark datasets, nuScenes [2] and Semantic KITTI [1], and attain comparable
performance in mIoU when compared to selective baselines. However, executing
in the same hardware environment, we obtain significantly better latency when
compared to the MSeg3D algorithm.

2 Related Work

2.1 3D Semantic Segmentation for Autonomous Driving

2D image-based semantic segmentation algorithms for object and scene recog-
nition were well researched in computer vision with an early focus on CNN
methods [12,21,23,25]. Wang et al. introduced the Pyramid Vision Transformer
(PVT), which possesses advantages from both CNN and Transformer, and can
serve as a direct replacement for CNN backbones [18]. Xia et al. proposed a
novel deformable self-attention module, the flexibility of which enables it to
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4 S. Zhang et al.

focus on relevant regions and capture more informative features [20]. Based on
this module, they built a general backbone model called Deformable Attention
Transformer for both image classification and dense prediction tasks.

The increasing adoption of 3D LiDAR in EVs led to a series of works that
proposed 3D semantic segmentation deep learning algorithms on 3D point clouds.
LiDAR-only Methods. Charles et al. proposed the PointNet, which directly
models each point in a point cloud for 3D classification and segmentation [3].
Zhou et al. created Cylinder3D, a 3D convolution-based framework that exploits
the 3D topology relations and structures of driving-scene point clouds [26].
Cortinhal et al. introduced SalsaNext, a real time algorithm with an encoder-
decoder structure for uncertainty-aware semantic segmentation [6]. Hu et al.
proposed RandLA-Net, an efficient and lightweight network that can infer per-
point semantics for large-scale point clouds using random point sampling [8].

LiDAR+Camera Methods. Krispel et al. proposed FuseSeg, a framework
that combine LiDAR and RGB data to segment LiDAR point clouds [9]. Liu et
al. leveraged all three different representations, including the point-, voxel-, and
range-views of LiDAR point clouds, and RGB images from cameras to construct
the UniSeg network [11]. UniSeg is designed to carry out both semantic and
panoptic segmentation simultaneously. Lastly, Li et al. proposed the MSeg3D
framework to address three common challenges in fusing LiDAR and camera
data, namely modality heterogeneity, limited sensor field of view intersection,
and multi-modal data augmentation [10].

2.2 Computational Efficiency in LiDAR-Based 3D Semantic
Segmentation

Computational efficiency is of critical importance for LiDAR-based 3D semantic
segmentation in an autonomous driving setting [4,13,15,19,24].

Zermas et al. proposed a fast and low complexity segmentation pipeline for 3D
point cloud semantic segmentation with improved running time and comparable
segmentation performance when compared with multiple baseline methods [24].
Wang et al. built the PointSeg real-time semantic segmentation method on 3D
LiDAR point clouds based on the light-weight SqueezeNet with 90 frames per sec-
ond (FPS) on a single GPU [19]. Milioto et al. propose the Rangenet++, a fast
and accurate LiDAR semantic segmentation algorithm with sensor frame rate [13].
Chen et al. proposed the RangeSeg network, in which a shared encoder back-
bone with two range dependent decoders to improve computation efficiency as the
heavy decoder only focuses on distant objects, and the light decoder processes the
entire image [4]. Park et al. proposed the PCSCNet for fast 3D semantic segmen-
tation on LiDAR point cloud using point convolution and sparse convolution net-
work [15]. Among the state-of-the-art real-time models in semantic segmentation,
the authors was able to show better performance in LiDAR point cloud inference.

Recognizing that voxel and fusion-based semantic segmentation models such
as the newly proposed MSeg3D [10] have maintained the best overall segmenta-
tion performance in mIoU, in this work, we attempt to make improvements to
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S2A-Attention for Multimodal 3D Semantic Segmentation 5

these models so that we can achieve comparable or better segmentation perfor-
mance with sensor frame rate speed.

3 Method

3.1 Problem Formulation

Let {Lin, Cin} be a multi-modal sample, where Lin ∈ R
Npoint×Xin denotes

a LiDAR point cloud containing Npoint points, each associated with Xin-
dimensional input features such as 3D coordinates and reflectance; Cin ∈
R

Ncam×3×Hin×Win represents RGB images captured by Ncam cameras. With
the aid of sensor calibration, a 3D point with coordinate (x, y, z) can be mapped
to the c-th local camera’s image plane, resulting in a pixel coordinate (u, v). The
3D semantic segmentation task is to assign one of the Ncls semantic categories
to each individual point within the 3D point cloud.

3.2 Unimodal Representation Extraction (URE)

The Unimodal Representation Extraction (URE) module is a replaceable and
flexible component in our proposed framework, and can accommodate different
multimodal data as long as it possesses multiple streams of input representa-
tions. Each stream of the representations needs not be feature encodings that
are extracted from one single data modality. In our current work, we adopt
the MSeg3D [10] single modality feature extraction pipeline and the Geometry-
based Feature Fusion module. It uses two different backbone networks to extract
LiDAR and Camera unimodal features as initial model inputs; and a Geometry-
based Feature Fusion module to generate enhanced representation for field of
view intersection between LiDAR and cameras. Each unimodal feature repre-
sentation is also semantically enhanced by projecting it into a Ncls dimensional
space, with each dimension representing a semantic category. More details can
be referred to [10], but below we provide the necessary details relevant to our
current network implementation.

Given the input {Lin, Cin}, the voxel-based LiDAR feature representation and
the camera feature representation extracted from the selected backbone network
can be denoted as V ∈ R

Nvoxel×Xvoxel and C ∈ R
Ncam×3×Hin×Win , respectively,

where Xvoxel is the LiDAR point channel dimension.
Then the extracted voxel features are devoxelized to Flidar point by point,

while the intercepted camera pixels are identified using bilinear interpola-
tion, and the camera features Fcam are subsequently generated following sim-
ilar process. We have Flidar = [flidar,i]

i=Npoint
i=1 ∈ R

Nvoxel×Xvoxel and Fcam =
[fcam,i]

i=Npoint
i=1 ∈ R

Npoint×Ximg , where Ximg is the image channel dimension.Using
fully connected layers Flidar and Fcam, we project flidar,i and fcam,i into Xint-
dimensional spaces. These projected features are then concatenated and fused
through another MLP that has Xgfused output channels to obtain Fgfused.

To obtain unimodal semantic embeddings for LiDAR, a distribution matrix
Dlidar ∈ (0, 1)Ncls×Nvoxel is derived from an intermediate segmentation D′

lidar =
MLP (V ) and normalized using spatial softmax. Following the same procedure,
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6 S. Zhang et al.

we obtain Dcam for camera. And finally we have Elidar = Dlidar ×V and Ecam =
DcamC ′.

3.3 Semantic Segmentation Agent Attention

Inspired by the proposed agent attention in [7], which is designed for general com-
puter vision tasks, we propose a more lightweight Semantic Segmentation Agent
(S2Agent) attention module for autonomous driving tasks. The left detailed view
in Fig. 1 shows the structure of S2Agent attention block. In S2Agent attention,
an agent matrix A (with dimension n << X) is used to aggregate information
from Q, as shown in Eq. 1, reducing matrix multiplication complexity. We adopt
the strategy of 3D Convolution and Pooling to ensure a larger receptive field
and richer semantic information on voxel embeddings.

A = 3D-conv(Q) + Pooling(Q) (1)

S2Agent attention enables the model to achieve a linear computational com-
plexity of O(NclsnX) relative to the number of input features X, where n is much
smaller than X. In contrast, the original softmax attention has a computational
complexity of O(NclsX

2). We reduce the computation time while ensuring the
ability to extract global information. As shown in Fig. 1, we apply S2Agent to
extract features from different modalities, as shown in Eq. 2.

S2Agent (E) = Softmax
(
QAT

E

) · Softmax
(
AEKT

) · V (2)

where E represents the input encoding sequence, Q,K, V ∈ R
Ncls×Xsfused , and

A ∈ R
n×Xsfused .

Previous 3D semantic segmentation research typically emphasized Softmax
attention for its strong feature extraction abilities. By seamlessly integrating
Softmax and linear attention, our S2Agent attention inherits the strengths of
both, achieving lower computational complexity and enhanced model expres-
siveness simultaneously.

3.4 Intra-Modality Feature Encoding (IntraMFE)

Most existing works fuse unimodal representations early before fully exploring a
compact intra-modality representation. For example, in MSeg3D, each stream of
modality representations from the URE module is directly fused with each other
using cross-modal attention. A more compact encoding will significantly reduce
the computation burden, particularly with attention block sequences. In order
to improve learning efficiency and mitigate computation complexity, we learn
intra-modality embeddings through stacking the S2Agent attention blocks. The
process is expressed in Eq. 3 and 4, where h indicates the h-th S2Agent block,
and modal indicates the underlying modality, and in our case could be replaced
by either LiDAR or Camera.

Eh′
modal = MHS2AA

(
Eh

modal ⊕ Eh−1
modal

)
(3)

Eh+1
modal = Norm

(
Eh′

modal

)
(4)
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S2A-Attention for Multimodal 3D Semantic Segmentation 7

3.5 Mid-Fusion for LiDAR and Camera

In multi-modal task, a common paradigm is to have the early layers of the net-
work focus on unimodal processing, and only introduce cross-modal connections
in the later layers. This approach is conceptually intuitive because lower-level lay-
ers typically handle low-level features, while higher-level layers focus on learning
semantic concepts. For instance, low-level visual features such as edges and cor-
ners in point clouds do not directly correspond to image features, so early fusion
with images may not be beneficial. Enlightened by [14], we fused LiDAR and
Camera representations using mid-fusion strategy with one single cross atten-
tion, which is shown in 5, where Ehlidar and Ehcam are the output embeddings
from IntraMFE module.

Eca = MHCA (Ehlidar, Ehcam, Ehcam) (5)

3.6 Inter-Modality Feature Learning (InterMFL)

Many real world problems with multimodal sensor solutions have a hierarchi-
cal fusion structure among sensors, and are similar to our current problem.
Specifically, we employ mid-fusion strategy to fuse homogeneous representations
generated by the IntraMFE module. Then the mid-fusion output will need to be
further fused with other representation streams that can either be from a dif-
ferent view or entirely different modalities. Our propose Intermodality Feature
Learning (InterMFL) module aims to solve the global fusion task.

We apply both Multi-head cross-attention and S2Agent attention to fuse
the field of view interception features from IntraMFE Fhfused, and the output
features from Mid-Fusion Eca. This process is illustrated in Fig. 1: InterMFL
and also expressed in Eq. 6 and 7, where h indicates the h-th block in InterMFL.

Fh+1
ca = Norm

(
MHCA

(
Fh

ca, Eh
ca, Eh

ca

))
(6)

Eh+1
ca = Norm

(
MHS2AA

(
Eh

ca ⊕ Eh−1
ca

))
(7)

4 Experiments

4.1 Datasets

nuScenes. The nuScenes [2] dataset consists of 28,130 training samples, 6,019
validation samples, and 6,008 testing samples. Each sample includes a sparse
point cloud from a 32-beam LiDAR and RGB images from six cameras posi-
tioned around the vehicle. Due to differing vertical FOVs between the LiDAR
and cameras, some points project below the images. Following the official pro-
tocol, the dataset contains 17 categories (Ncls = 17) with semantic annotations
provided only for the point clouds.

SemanticKITTI. The SemanticKITTI [1] dataset is collected using a 64-beam
LiDAR. As per the protocols in MSeg3D [10], sequences 00 to 10 except 08
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8 S. Zhang et al.

Fig. 2. LiDAr sample from the SemanticKITTI dataset. A detailed zoom-in view
highlights the primary differences in classification performance between our proposed
method and MSeg3D [10]. In this case, MSeg3D incorrectly classifies pedestrians (rep-
resented by brown points) on the road, while our method yields results that are signif-
icantly more consistent with the ground-truth annotations.

containing 19130 samples are used for training, while sequence 08 containing
4071 samples are used for validation. This dataset includes only the images from
the front-view camera. The number of semantic categories Ncls is 20, and only
the semantic annotations for the point clouds are provided.

4.2 Evaluation Metrics

Mean Intersection over Union (mIoU). mIoU is a standard metric for
evaluating semantic segmentation models, as it offers a comparable single value
across models and datasets and penalizes both false positives and negatives. It is
the average of Intersection over Union (IoU) values for each class, measuring the
overlap between predicted and ground truth segmentation masks. The formulas
for IoU and mIoU are IoU = TP

TP+FP+FN and mIoU = 1
C

∑C
c=1 IoUc respec-

tively, where TP, FP, andFN are true positive, false positive, and false negative
respectively, and C is the number of classes.

Latency. Latency refers to the time delay between the moment point clouds
and images are captured and the moment the model produces an output in
semantic segmentation tasks. This latency is critical because it directly affects
the vehicle’s ability to make timely and accurate decisions in real-time driving
scenarios.

4.3 Implementation Details

We train our model under the same schedule: AdamW optimizer and one-cycle
learning rate policy with division factor 10. Momentum ranges from 0.95 to
0.85, weight decay 0.01, maximum learning rate 0.01, and each batch contains
32 random samples distributed on 4 RTX 3090 GPUs with 24 epochs.

5 Results

As shown by Table 1 and 2, for the NuScenes and SemanticKITTI datasets
respectively, our proposed method achieves better result on mIoU when com-
pared to all selected single-modal methods. When compared to other multimodal
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S2A-Attention for Multimodal 3D Semantic Segmentation 9

methods such as MSeg3D [10], our model is marginally better or comparable in
mIoU. Specifically, we obtain 82.5 on mIoU, which is higher than MSeg3D’s 81.4,
while our latency is significantly lower than MSeg3D’s at about one fourth on
the NuScenes dataset. On the SemanticKITTI dataset, Our proposed method
maintain comparable mIoU with MSeg3D. Note that in both datasets, UniSeg
achieves the best performance in mIoU. This is likely due to its adoption of three
different point cloud representations from LiDAR, which is potentially increasing
latency. Due to lack of source code from UniSeg, we can not obtain latency for it.

Figure 2 provides an example point cloud scene with semantic segmentation
results from MSeg3D and our proposed method. When compared to the ground
truth, we can visually see the differences between the two methods. By examining
the results, it is clear that the proposed method has higher discrimination on
some small details, such as fences and pedestrians.

Table 1. Quantitative comparisons on the nuScenes dataset using per-class IoU and
mIoU. The latency results except MSeg3D and our proposed method are directly
adopted from the original articles if they are reported, and thus only serve as ref-
erences as they were computed using different computing environments.

Methods Modality Barrier Bicycle Bus Car C-Vehicle Motorcycle Pedestrian Traffic Cone Trailer Truck D-Surface Other Sidewalk Terrain Manmade Vegetation mIoU Latency(s)

PolarNet L 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5 69.4 0.06

JS3C-Net L 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.1 96.8 64.5 76.9 74.1 87.5 86.1 73.6 -

Cylinder3D L 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.2 97.7 70.2 80.3 75.5 90.4 87.6 77.2 -

AMVNet L 80.6 31.9 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.4 67.4 79.4 75.5 91.5 88.7 77.3 -

SPVNAS L 80.0 29.9 91.9 90.8 64.7 78.9 75.6 70.9 81.0 74.6 97.4 69.2 79.9 76.1 89.3 87.1 77.3 -

Cylinder3D++ L 82.7 33.8 84.3 89.4 69.6 79.4 77.2 73.4 84.5 69.4 97.6 70.2 80.2 75.5 90.4 87.5 77.8 0.14

AF2S3Net L 78.8 52.2 89.9 84.1 77.4 74.3 77.3 71.9 83.8 73.7 97.1 66.4 77.5 74.0 87.6 86.8 78.3 -

SPVCNN++ L 86.3 43.1 91.9 92.1 75.9 75.7 83.4 77.3 86.8 77.4 97.7 71.2 81.1 77.2 91.7 88.9 81.1 0.11

LIFusion L+C 58.1 36.3 86.6 84.2 59.9 79.6 80.3 77.7 83.2 68.7 97.1 68.1 77.0 74.4 91.0 88.9 75.7 -

PMF L+C 82.1 40.3 80.9 86.4 63.7 79.2 79.7 75.8 81.1 67.0 97.2 67.6 78.0 74.4 89.9 88.4 77.0 0.02

CPFusion L+C 83.6 37.0 89.0 86.2 70.0 77.4 78.0 74.5 82.7 67.9 96.6 68.2 79.5 74.9 90.5 86.9 77.7 -

2D3DNet L+C 83.0 59.3 87.9 85.0 63.7 84.4 81.9 75.9 84.7 71.9 96.9 67.3 79.8 75.9 92.0 89.1 79.9 -

CPGNET-LCF L+C 84.9 63.5 94.4 92.2 79.1 85.9 85.4 78.8 86.2 76.4 97.9 66.5 81.0 76.4 93.0 89.5 83.2 -

Mseg3D [10] L+C 83.1 42.5 94.9 92.0 67.1 78.6 85.7 80.5 87.5 77.3 97.7 69.8 81.2 77.8 92.4 90.1 81.4 0.45

UniSeg L+C 85.9 71.2 92.1 91.6 80.5 88.0 80.9 76.0 86.3 76.7 97.7 71.8 80.7 76.7 91.3 88.8 83.5 -

Ours L+C 85.1 53.4 93.2 91.8 78.5 78.9 86.3 77.5 86.8 76.2 97.8 66.6 81.4 77.3 91.2 87.7 82.5 0.12

Table 2. Quantitative comparisons on the semanticKITTI dataset using mIoU.

Method Modality mIoU

SalsaNext L 59.4

SPVNAS L 62.3

Cylinder3D L 64.9

PointPainting L+C 54.5

PMF L+C 63.9

UniSeg L+C 75.2

CPGNet-LCF L+C 67.1

MSeg3D [10] L+C 66.7

Ours L+C 67.3

Table 3. Robustness analysis on Nuscenes by removing some cameras as malfunction.

#-Camera 6 5 4 3 2 1 0

mIoU 82.5 79.8 78.6 77.9 76.7 75.8 74.8
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10 S. Zhang et al.

Table 4. The impacts of adopting different attention mechanisms on mIoU and latency
on the NuScenes dataset.

Attention IntraMFE InterMFL mIoU #Params(M) Latency(s)

Softmax � � 81.3 87.34 0.415

� S2A 81.7 72.88 0.359

S2A � 82.0 66.27 0.223

Linear � � 75.3 48.84 0.108

� S2A 77.4 49.42 0.110

S2A � 79.6 50.11 0.113

S2Agent � � 82.5 51.85 0.117

Table 5. Robustness analysis on point cloud frame per second using the Nuscenes
dataset. “#L-Frame” is the frame number per second for LiDAR.

#-Camera × × × × × × �
#L-Frame 1 10 20 25 30 40 25

mIoU(MSeg3D) 72.0 74.7 75.4 75.8 75.3 75.2 81.2

mIoU(Ours) 73.5 75.1 76.4 76.8 76.3 75.8 82.5

Table 6. Effect of different fusion strategies on mIoU and latency on NuScenes.

Fusion strategy mIoU #Params(M) Latency(s)

Early-Fusion 80.4 47.64 0.099

Late-Fusion 82.2 52.71 0.131

Mid-Fusion 82.5 51.85 0.117

Ablation Analyses

1. Attention Modules: Table 4 provides a summary of the softmax, linear,
and the S2Agent attention modules on mIoU, number of weight parameters, and
latency on our proposed method. Specifically, S2Agent attention leads to best
mIoU with a lower latency than when using softmax attention. 2. Robustness
Analysis on Camera Failure: Simulation experiments under different camera
failure conditions are carried out and results are shown in Table 3. With all
cameras functioning normally, we achieve 82.5 on mIoU. In contrary, only 74.8
on mIoU is obtained when all six cameras fail. 3. Robustness Analysis on
Point Cloud Frame Per Second: Using the nuScenes dataset and following
the methodology of [22], we aggregate multiple previous frames into the current
frame based on the provided ego-vehicle motion information. As is shown in
Table 5, we obtain best performance on mIoU when the number of LiDAR frames
per second is 25. 4. Fusion Strategy: Table 6 summarizes the impact of various
fusion strategies on mIoU, the number of weight parameters, and latency within
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our proposed method. Notably, the Mid-Fusion strategy achieves the highest
mIoU performance while maintaining significantly lower latency when compared
to other fusion strategies.

6 Conclusion

In this work, we introduce a new agent attention module, the Semantic Segmen-
tation Agent (S2A) attention module, which is designed to reduce computational
complexity in 3D semantic segmentation tasks using LiDAR and cameras. By
integrating intra-modality feature encoding with S2A attention modules and
employing a mid-fusion strategy, we have improved segmentation speed in an
end-to-end 3D semantic segmentation network tailored for autonomous driv-
ing. Our evaluation on two public benchmark datasets, nuScenes and Seman-
tic KITTI, demonstrates that our network achieves comparable performance in
terms of mIoU against selected baselines. Notably, when executed in the same
hardware environment, our approach significantly reduces latency when com-
pared to the newly proposed MSeg3D.
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